Seat No. : \qquad

LD-125

April-2014

F.Y. M.Sc. (CA \& IT) (Sem.-II) Integrated
 Matrix Algebra \& Graph Theory

Time : 3 Hours]
[Max. Marks : 100

1. (A) Attempt any one :
(i) Define degree of a vertex and degree sequence of a graph. State and prove the first theorem of graph theory. Verify the same for the graph :

(ii) Given the following graph :

(1) Find its complement.
(2) Find its square.
(3) Is it bipartite ? Justify.
(4) Find the Vertex Deleted sub graph G-d of G.
P.T.O.
(B) Attempt any two :
(i) Represent the following graph using :
(1) Adjacency matrix
(2) Incidence matrix

(ii) When are two graphs said to be isomorphic ? Are the following graphs isomorphic? Justify.

(iii) (1) How many vertices does a full 4 -ary tree with 100 leaves have ?
(2) How many leaves does a full 5-ary tree with 100 internal vertices have?
(C) Attempt all :
(i) How many edges does a graph have if its degree sequence is $4,3,3,2,2$?
(ii) For what value(s) of m and n is $\mathrm{k}_{\mathrm{m}, \mathrm{n}}$, the complete bipartite graph, a complete graph ?
(iii) Give an example of a self-complementary graph.
(iv) What is the sum of the entries in a row of the incidence matrix ?
2. (A) Attempt any one :
(i) Apply Dijkstra's Algorithm to find the shortest path from ' a ' to ' z ' in the following graph :

(ii) Differentiate between Kruskal's Algorithm and Prim's Algorithm. Find a minimal spanning tree using Kruskal's and Prim's Algorithm for the following graph :

(B) Attempt any two :
(i) Let G be an acyclic graph with n -vertices and k -connected components, that is, $\omega(\mathrm{G})=\mathrm{k}$. Then prove that G has $\mathrm{n}-\mathrm{k}$ edges.
(ii) Apply Breadth First Search (BFS) algorithm to find the shortest path from ' a ' to ' j ' in the following graph :

LD-125
3
P.T.O.
(iii) What is a strongly connected and a weakly connected graph ? Determine whether the following graph is strongly connected and if not whether it is weakly connected. Justify your answer.

(C) Attempt all :
(i) How many different spanning trees does the complete graph K_{6} have ?
(ii) True or False : A connected graph with 10 vertices can have 8 edges. Justify.
(iii) Define a bridge.
(iv) Define a spanning tree.
3. (A) Attempt any one :
(i) State and prove Euler's formula for planar graphs.
(ii) Prove that the complete graph K_{5} is non-planar.
(B) Attempt any two :
(i) Define an Euler trail and an Euler tour. Determine whether the given graph has (i) an Euler trail, (ii) an Euler tour. Construct them if they exist.

LD-125
4
(ii) Define a plane and a planar graph. Is the following graph planar? If yes, redraw it without any crossings and also find the number of faces of this graph.

(iii) Find the inverse of the matrix :
$A=\left[\begin{array}{rrr}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$
(C) Attempt all :
(i) Is K_{4} a plane graph ? Is it planar? Explain.
(ii) What is the crossing number of K_{5} ?
(iii) Define a symmetric matrix.
(iv) Define an orthogonal matrix.
4. (A) Attempt any one :
(i) Verify the Caley-Hamilton theorem for the matrix $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find A^{-1}.
(ii) Define a linear transformation. Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ be given by $\mathrm{T}(x, \mathrm{y}, \mathrm{z})=(x+\mathrm{y}, \mathrm{y}+\mathrm{z})$. Is T a linear transformation ?
(B) Attempt any two :
(i) Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{rr}1 & -2 \\ -5 & 4\end{array}\right]$
(ii) Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{ccrc}6 & 1 & 1 & 1 \\ 16 & 1 & -1 & 5 \\ 7 & 2 & 3 & 0\end{array}\right]$
(iii) Examine the consistency and if consistent, solve the system of equations
$x+2 y=3$
$\mathrm{y}-\mathrm{z}=2$
$x+y+z=1$
(C) Attempt all :
(i) Determine whether the set of vectors $\{(1,0),(0,1),(0,0)\}$ is linearly dependent or independent.
(ii) Find the product $\left[\begin{array}{lll}-1 & 3 & 5\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(iii) Define linear combination.
(iv) Define Span.
5. (A) Attempt any one :
(i) Find the Range, rank, Null Space and nullity of the linear transformation $\mathrm{T}: \mathrm{V}_{3} \rightarrow \mathrm{~V}_{4}$ given by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, x_{3}\right)$
(ii) Find the matrix of the linear transformation $T: R^{2} \rightarrow R^{2}$ given by

$$
\begin{aligned}
& \mathrm{T}(x, y)=(x+y, x-y) \\
& \mathrm{B}_{1}=\{(1,0),(0,1)\} \\
& \mathrm{B}_{2}=\{(1,2),(3,4)\}
\end{aligned}
$$

(B) Attempt any two :
(i) How many solutions are there in $x_{1}+x_{2}+x_{3}+x_{4}=17$ subject to the constraints $x_{1} \geq 1, x_{2} \geq 2, x_{3} \geq 3, x_{4} \geq 0$?
(ii) How many committees of five people can be chosen from 15 men and 8 women if (i) Exactly three men must be on each committee, (ii) At least 3 women must be on each committee.
(iii) There are 2504 computer science students at a school. Of these, 1876 have taken a course in Pascal, 999 have taken a course in Fortran and 345 have taken a course in C. Further 876 have taken courses in both Pascal and Fortran, 231 have taken courses in both Fortran and C and 290 have taken courses in both Pascal and C. If 189 of these students have taken courses in Fortran, Pascal and C, how many students have not taken a course in any of these three programming languages ?
(C) Attempt all :
(i) Find the number of terms in the expansion of $(3-2 x+5 z)^{7}$.
(ii) How many different permutations can be made out of the letters of the word BRAVE?
(iii) In how many different ways can 7 different beads be arranged to form a necklace?
(iv) Expand $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$.

