\qquad

LD-110

April-2014

B.Sc. Sem. VI

CC-307 : Mathematics
(Abstract Algebra - II)
Time : 3 Hours]
[Max. Marks : 70
Instructions : (1) All the questions are compulsory and carry $\mathbf{1 4}$ marks.
(2) Notations are usual, everywhere.
(3) Figures to the right indicate marks of the question/subquestion.

1. (a) Define a ring and a ring with unity. If R is a ring with unity, then prove that $(-1) \cdot \mathrm{a}=-\mathrm{a}$, for every $\mathrm{a} \in \mathrm{R}$ and prove also that $(-1)(-1)=1$ in R .

Define a commutative ring and show that a ring R in which $(a+b)^{2}=a^{2}+2 a b+b^{2}$ holds true for all, $a, b \in R$ is a commutative ring.
(b) Define a Boolean ring and show that $(\mathrm{P}(\mathrm{U}), \Delta, \cap)$ is a Boolean ring.

Define an integral domain and prove that every field is an integral domain. Is the converse true? Justify your answer in short.
2. (a) Define a subring and prove that a nonempty subset U of a ring R is a subring of R if and only if (i) $a-b \in U$ and (ii) $a \cdot b \in U$, for all $a, b \in U$.
Show that $I=\left\{\left[\begin{array}{ll}a & 0 \\ b & 0\end{array}\right] / a, b \in Z\right\}$ is a left ideal which is not a right ideal of the ring $\mathrm{M}_{2}(\mathrm{Z})$ of all 2×2 matrices with integral entries.
(b) Define an ideal. If R is a commutative ring with unity, which has no proper ideal, then prove that R is a field.

OR

Define a ring Homomorphism. If $\Phi:(\mathrm{R},+, \cdot) \rightarrow\left(\mathrm{R}^{\prime}, \oplus, \bullet\right)$ is a ring homomorphism then prove that $\Phi(\mathrm{I})$ is an ideal of R^{\prime} whenever I is an ideal of R .
3. (a) Define the degree of a nonzero polynomial in $\mathrm{D}[x]$.

For nonzero polynomials $\mathrm{f}, \mathrm{g} \in \mathrm{D}[x]$, prove in usual notations that $[\mathrm{f} \cdot \mathrm{g}]=[\mathrm{f}]+[\mathrm{g}]$

OR

If D ' is the set of all constant polynomials in $\mathrm{D}[x]$, then prove in usual notations that $\mathrm{D} \cong \mathrm{D}^{\prime}$.
(b) Find the g.c.d. of $\mathrm{f}(x)=3 x^{3}+2 x^{2}+4$ and $\mathrm{g}(x)=x^{4}+3 x^{2}+1 \in \mathrm{Z}_{5}[x]$ and express it into the form $\mathrm{a}(x) \mathrm{f}(x)+\mathrm{b}(x) \mathrm{g}(x)$.

State the Eisenstein's criterion and use it to prove that $\mathrm{F}(x)=\mathrm{x}^{\mathrm{n}}-\mathrm{p}, \mathrm{n} \geq 2$ is irreducible over Q .
4. (a) Define an extension field.

Also show that the set $\mathrm{Q}[\mathrm{i}]=\{\mathrm{a}+\mathrm{ib} / \mathrm{a}, \mathrm{b} \in \mathrm{Q}\}$ is an extension field of Q .
OR
Prove that an integral domain can be embedded into a field.
(b) If $\mathrm{I}=\langle 4\rangle$, then show that I is a maximal but not a prime ideal of the ring 2 Z of all even integers.

OR

If I is a maximal idea of a commutative ring R with unity and if $a \in R$ with $a \notin I$, then show that $M=\{r \cdot a+k / r \in R$ and $k \in I\}$ is an ideal of R and $M=R$.
5. Attempt any seven of the following in short :
(a) Give an example of a non-commutative infinite ring.
(b) Give an example of a finite commutative ring.
(c) Give an example of a non-Boolean ring.
(d) Give an example of a right ideal which is not a left ideal.
(e) Define maximal and prime ideal.
(f) Define an embedding of rings.
(g) Define any two of the following terms:
(i) Polynomial in D
(ii) $\mathrm{D}[x]$
(iii) Quotient ring R/I.
(h) List the zeros of $\mathrm{f}(x)=x^{2}-1$ in Z_{15}.
(i) State the factor theorem for polynomials.

