0805E426

Candidate's Seat No:

M.Sc. (Sem.-II) Examination 409

Mathematics

Time: 3 Hours

May-2017

[Max. Marks: 70

MAT409:COMPLEX ANALYSIS-II

1. (a) If f is analytic on an open disk $|z-z_0| < R_0$, show that f(z) has (7)the series representation:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \quad (|z - z_0| < R_0)$$

OR

- (a) Show that the power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ represents a contin-(7)uous function S(z) at each point inside the circle of convergence $|z-z_0| = R.$
- (b) Answer any two of the following briefly: (4)
 - (i) Obtain $\frac{1}{z^2 \sinh z} = \frac{1}{z^3} \frac{1}{6} \cdot \frac{1}{z} + \frac{7}{360}z + \dots 0 < |z| < \pi$.
 - (ii) Represent the function $f(z) = \frac{z+1}{z-1}$ by one of its Laurent Series specifying the domain.
 - (iii) Represent the function $f(z) = \frac{1}{z(1+z^2)}$ by one of its Laurent Series specifying the domain.
- (c) Answer all of the following very briefly:
 - (i) Obtain the Taylor series for e^z in powers of z-1.
 - (ii) Obtain the Maclaurin series for the function cos z.
 - (iii) Show that $\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}} \quad |z-i| < \sqrt{2}$
- 2. (a) Evaluate the following:(i) $\int_{|z|=2} \frac{\cosh \pi z}{z(z^2+1)} \mathrm{d}z$ (ii) $\int_{|z|=3} \frac{z^3 e^{1/z}}{1+z^3} \mathrm{d}z.$ (7)

(a) Suppose C_N denotes the positively oriented boundary of the square (7)whose edges lie along the lines $x = \pm \left(N + \frac{1}{2}\right) \pi$ and $y = \pm \left(N + \frac{1}{2}\right) \pi$, where N is a positive integer. Show that

$$\int_{C_N} \frac{\mathrm{d}z}{z^2 \sin z} = 2\pi i \left[\frac{1}{6} + 2 \sum_{n=1}^N \frac{(-1)^n}{n^2 \pi^2} \right]$$

(PTo)

(3)

E 426-2

- (b) Answer any <u>two</u> of the following briefly:
 - (i) Describe three types of isolated singular points with an illustration of each type.

(4)

(3)

- (ii) Evaluate the integral: $\int_{|z|=3} \frac{\exp(-z)}{(z-1)^2} dz.$
- (iii) Evaluate the integral $\int_{|z|=2}^{\infty} \frac{1}{1+z^2} dz$.
- (c) Answer all of the following very briefly: (3)
 - (i) List all the singular points of $\frac{1}{\sin(\frac{\pi}{2})}$. Which of these are isolated singular points and which are not?
 - (ii) List all the singular points of $\frac{z+1}{z^3(z^2+1)}$. Which of these are isolated singular points and which are not?
 - (iii) Find $\underset{z=i}{\text{Res}} \frac{1}{(z-i)^2}$.
- 3. (a) State and prove Liouville's theorem. What does this theorem say for the entire function that is not a constant function? What can you conclude for the function $\exp(z)$ or $\sin(z)$?

OR

- (a) Suppose f(z) is analytic and $|f(z)| \le |f(z_0)|$ on $|z z_0| < \epsilon$. Show that f is constant throughout the neighbourhood.
- (b) Answer any <u>two</u> of the following briefly: (4)
 - (i) State the Maximum Modulus Principle. And derive the Minimum Modulus Principe after carefully stating it.
 - (ii) Suppose that f(z) is entire and that the harmonic function u(x,y) = Re[f(z)] has an upper bound; that is $u(x,y) \leq u_0$ for all points (x,y) in the xy plane. Show that u(x,y) must be constant throughout the plane.
 - (iii) Suppose $f(z) = e^z$ and R is the rectangular region $0 \le x \le 1$, $0 \le y \le \pi$. Where does u(x, y) = Re[f(z)] reach its maximum and minimum on R?
- (c) Answer all of the following very briefly:
 - (i) State carefully the Fundamental theorem of algebra.
 - (ii) Let $f(z) = (z+1)^2$ and R be the closed triangular region determined by 0, 2 and i. Where do the maximum and minimum of

E426-3

|f(z)| occur on R.

- (iii) |f(z)| can have its minimum value at an interior point of R. Justify the statement.
- 4. (a) Giving all the details evaluate the improper integral $\int_0^\infty \frac{x^2}{x^6+1} dx$ using residues. (7)

<u>OR</u>

- (a) Giving all the details evaluate the improper integral $\int_0^\infty \frac{x^2}{(x^2+9)(x^2+4)^2} dx$ (7) using residues.
- (b) Answer any <u>two</u> of the following briefly: (4)
 - (i) Giving minimal details show that $\int_{-\pi}^{\pi} \frac{d\theta}{1+\sin^2\theta} = \sqrt{2}\pi$
 - (ii) Giving the main steps only and using residues find the value of

$$\int_0^\infty \frac{1}{x^3 + 1} \mathrm{dx}$$

(iii) Under the appropriate assumptions show that:

$$\lim_{R \to \infty} \int_{C_R} f(z) e^{iaz} dz = 0$$

What is this result called?

- (c) Answer all of the following very briefly:
 - (i) How in two ways can one define the Improper Integral $\int_{-\infty}^{\infty} f(x) dx$?
 - (ii) Using residues and giving minimal details find the value of:

$$\int_0^\infty \frac{1}{x^2 + 1} \mathrm{dx}$$

- (iii) How do you convert $\int_0^{2\pi} F(\sin \theta, \cos \theta) d\theta$ to the contour integral?
- 5. (a) Suppose f is meromorphic in the domain interior to a positively oriented simple closed contour C, and f is analytic and nonzero on C. Then show that the winding number of $\Gamma = f(C)$ around origin is given by

$$\frac{1}{2\pi}\Delta_C \arg f(z) = Z - P$$

What are Z and P?

(PTO)

(3)

E426-4 OR

- (a) Give carefully the definition of Möbius Transformation as a bijection from the extended complex plane onto the extended complex plane. Show that composition of two Möbius Transformations is also a Möbius Transformation. Show that the inverse of a Möbius Transformation is also a Möbius Transformation.
- (b) Answer any <u>two</u> of the following briefly:
 - (i) Show that every linear fractional transformation, with one exception, has at most two fixed points in the extended complex plane. State clearly as to what is this exception?

(4)

(3)

- (ii) Show that any bilinear transformation is completely determined by its effect on any three distinct points.
- (iii) Counting multiplicities determine the number of roots of the polynomial equation $2z^5 6z^2 + z + 1 = 0$ in the annulus $1 \le |z| < 2$.
- (c) Answer all of the following very briefly:
 - (i) With the use of indented path how will you obtain $\int_0^\infty \frac{\sin x}{r} dx = \frac{\pi}{2}$ nærate the story without elaborating too much.
 - (ii) Find all the fixed points of $Tz = \frac{z-1}{z+1}$ in the extended complex plane.
 - (iii) Give an example of Möbius Transformation which has exactly one fixed point in the extended complex plane. Which is the fixed point of your example?