Seat No. : _____

XU-130

April-2013

Five Year M.Sc. (CA & IT) Integrated (K.S.) (Sem.-IV) S.Y. M.Sc.

Computer Oriented Numerical Methods

Time: 3 Hours]

1. (a) Any **two**:

- (1) Solve the following system of equations using Gauss Elimination Method :
 - 2x + y + 3z = 12x + 6y + 8z = 36x + 8y + 18z = 5
- (2) Solve the following system of equations using Gauss Jacobi Method :

$$10x + 2y + z = 9$$

 $x + 10y - z = -22$
 $-2x + 3y + 10z = 22$

(3) Solve the following system of equations using Gauss Seidel Method :

$$5x - 2x_2 + 3x_3 = -1$$

$$-3x_1 + 9x_2 + x_3 = 2$$

$$2x_1 - x_2 - 7x_3 = 3$$

(b) Answer the followings :

- (1) Convert $(1A2C)_{16}$ Number into decimal number.
- (2) Represent $(118)_{10}$ into 1's complement.
- (3) Explain transcendental number system with example.

2. (a) Answer the followings :

(1) Fit a parabola curve to the following data :

XU-130

6

14

14

[Max. Marks : 100

(2) Fit an exponential curve $y = ab^x$ to the following data :

x	1	2	3	4	5	6	7	8
у	1	1.2	1.8	2.5	3.6	4.7	6.6	9.1

- (b) Answer the followings :
 - (1) Let x = 0.00458529, find the absolute error if x is truncated to three decimal digits.
 - (2) Divide 0.9998 E 5 by 0.1000 E 99.
- 3. (a) Give geometrical interpretation of Newton Raphson method.

OR

Compare Bisection method, False Position method and Newton-Raphson method.

(b) Find one of the roots of the non-linear equation by Bisection method (correct upto three decimal places): 7

$$x^3 - 4x - 10 = 0$$

(c) Given the following table :

x	0.5	0.75	1.00	1.25	1.50
y = f(x)	0.13	0.42	1.00	1.95	2.35

find f' (0.75)

- 4. (a) Answer the followings :
 - (1) Show the derivation of Newton's forward difference polynomial.
 - (2) Given the table of values as

x2.53.04.54.756.0y (x)8.8511.4520.6622.8538.60

find y(3.5)

- (b) Derive the formula of Lagrangian Polynomial.
- 5. (a) Derive the formula for Simpson's $3/8^{\text{th}}$ rule. 8 (b) $\int_{1}^{2} \frac{1}{1+x^2} dx$ by trapezoidal rule with h = 0.25. 6

XU-130

6

8

16

4

5

(c) Using Runge Kutta method of second order, solve the following :

$$\frac{dy}{dx} = x^2 + y$$
for $x = 0.1, 0.2, 0.3 \& 0.4$ given that $y = 1$ when $x = 0.$

OR

(a) Give geometrical interpretation of Range Kutta method of forth order.

(b) Using Euler's formula solve the following :

 $\frac{dy}{dx} = x + y^2$ for $x = 1.1, 1.2, 1.3$ given that $y = 1$ when $x = 1.$

(c) Using Simpson's $\frac{1}{3}$ rule solve the following :

 $\int_{2}^{4} (x^2 + 2x) dx$ using step size 0.5.

6