Seat No. :

XU-130

April-2013

Five Year M.Sc. (CA \& IT) Integrated (K.S.) (Sem.-IV)
 S.Y. M.Sc.
 Computer Oriented Numerical Methods

Time : 3 Hours]
[Max. Marks : 100

1. (a) Any two :
(1) Solve the following system of equations using Gauss Elimination Method:

$$
\begin{aligned}
& 2 x+y+3 z=1 \\
& 2 x+6 y+8 z=3 \\
& 6 x+8 y+18 z=5
\end{aligned}
$$

(2) Solve the following system of equations using Gauss Jacobi Method:

$$
\begin{aligned}
& 10 x+2 y+z=9 \\
& x+10 y-z=-22 \\
& -2 x+3 y+10 z=22
\end{aligned}
$$

(3) Solve the following system of equations using Gauss Seidel Method :

$$
\begin{aligned}
& 5 x-2 x_{2}+3 x_{3}=-1 \\
& -3 x_{1}+9 x_{2}+x_{3}=2 \\
& 2 x_{1}-x_{2}-7 x_{3}=3
\end{aligned}
$$

(b) Answer the followings :
(1) Convert (1A2C) ${ }_{16}$ Number into decimal number.
(2) Represent (118) ${ }_{10}$ into 1's complement.
(3) Explain transcendental number system with example.
2. (a) Answer the followings :
(1) Fit a parabola curve to the following data :

$$
\begin{array}{c|ccccc}
x & -2 & -1 & 0 & 1 & 2 \\
y & -72 & -46 & -12 & 35 & 93
\end{array}
$$

(2) Fit an exponential curve $y=a b^{x}$ to the following data:

x	1	2	3	4	5	6	7	8
y	1	1.2	1.8	2.5	3.6	4.7	6.6	9.1

(b) Answer the followings :
(1) Let $x=0.00458529$, find the absolute error if x is truncated to three decimal digits.
(2) Divide 0.9998 E - 5 by 0.1000 E 99 .
3. (a) Give geometrical interpretation of Newton Raphson method.

OR

Compare Bisection method, False Position method and Newton-Raphson method.
(b) Find one of the roots of the non-linear equation by Bisection method (correct upto three decimal places) :

$$
x^{3}-4 x-10=0
$$

(c) Given the following table :

x	0.5	0.75	1.00	1.25	1.50
$y=f(x)$	0.13	0.42	1.00	1.95	2.35

find f ' (0.75)
4. (a) Answer the followings :
(1) Show the derivation of Newton's forward difference polynomial.
(2) Given the table of values as

x	2.5	3.0	4.5	4.75	6.0
$y(x)$	8.85	11.45	20.66	22.85	38.60

find $y(3.5)$
(b) Derive the formula of Lagrangian Polynomial.
5. (a) Derive the formula for Simpson's $3 / 8^{\text {th }}$ rule.
(b) $\int_{0}^{2} \frac{1}{1+x^{2}} \mathrm{~d} x$ by trapezoidal rule with $\mathrm{h}=0.25$.
(c) Using Runge Kutta method of second order, solve the following :
$\frac{\mathrm{dy}}{\mathrm{d} x}=x^{2}+\mathrm{y}$
for $x=0.1,0.2,0.3 \& 0.4$ given that $\mathrm{y}=1$ when $x=0$.

OR

(a) Give geometrical interpretation of Range Kutta method of forth order.
(b) Using Euler's formula solve the following :

$$
\frac{\mathrm{dy}}{\mathrm{~d} x}=x+\mathrm{y}^{2} \text { for } x=1.1,1.2,1.3 \text { given that } \mathrm{y}=1 \text { when } x=1 .
$$

(c) Using Simpson's $\frac{1}{3}$ rule solve the following:

$$
\int_{2}^{4}\left(x^{2}+2 x\right) \mathrm{d} x \text { using step size } 0.5
$$

