If γ is a non-trivial complex continuous algebra homomorphisms between L¹ (2)and \mathbb{C} , then show that there exists a unique positive integer N such that $\gamma(f) = \hat{f}(N)$, for every $f \in L^1$.

Time: 3 Hours]

- 1. (A) Attempt any **one** :
 - Prove that the set off all trigonometric polynomials is dense in C and in L^p for (1) $1 \le p < \infty$.
 - Show that C is not dense in L^{∞} . (2)
 - (B) Attempt any **two** :
 - If $1 \le p < q < \infty$, and $f \in L^q$, then show that $|| f ||_p \le || f ||_q$. (1)
 - If f is absolutely continuous then show that $\widehat{Df}(n) = \inf \hat{f}(n)$. (2)
 - (3) If $f \in L^1$ then show that

$$\frac{\hat{f}}{\hat{f}}(n) = \overline{\hat{f}(-n)}$$

- (C) Answer in brief :
 - State any one consequence of the uniqueness theorem. (1)
 - (2)State the Riemann-Lebesgue lemma.
 - (3) Define convolution in L^1 .

2. (A) Attempt any one :

- Let $f \in L^1$. Show that (1)
 - (ii) If g is absolutely continuous then f * g is absolutely continuous.
 - (i) If $g \in C^1$, then $f^* g \in C^1$;

1

April-2013 M.Sc. Sem.-IV **508 – MATHEMATICS**

(Fourier Analysis)

XZ-112

P.T.O.

Seat No. :

7

4

[Max. Marks: 70

3

7

- (B) Attempt any **two** :
 - (1) If $f \in L^1$ and g is of bounded variation then show that f * g is of bounded variation.
 - (2) Show that L^1 does not have identity with respect to convolution.
 - (3) True or False : If for f, $g \in L^1$, f * $g \equiv 0$, then at least one of the functions f and g is a trigonometric polynomial.
- (C) Answer in brief :
 - (1) Show that convolution is commutative.
 - (2) Give an example of an idempotent element in L^1 .
 - (3) Show that if f * f = f, then f is a trigonometric polynomial.
- 3. (A) Attempt any **one** :
 - (1) State and prove localisation principle.
 - (2) State and prove Fejer's theorem.
 - (B) Attempt any **two** :
 - (1) If $\sum x_n$ is summable to 0 then show that the series is cesaro summable to 0.
 - (2) Show that the uniqueness theorem follows from Fejer's theorem.
 - (3) If for a trigonometric series $\sum c_n e^{inx}$, its cesaro means converge in L¹ norm to f, then show that $\sum c_n e^{inx}$ is a Fourier series of f.
 - (C) Answer in brief.
 - (1) State any one condition under which Cesaro summability implies summability.
 - (2) State any one consequence of localization principle.
 - (3) Show that $\sigma_N f = f * F_N$.
- 4. (A) Attempt any **one** :
 - (1) If $a_n \downarrow 0$ and $na_n = 0(1)$, then show that $\sum a_n \sin nx$ converges boundedly in $[-\pi, \pi]$.
 - (2) If (a_n) is convex and bounded, then prove that (a_n) is decreasing and $n\Delta a_n \rightarrow 0$. Further, show that (a_n) is quasi-convex.

XZ-112

3

7

4

3

7

- (B) Attempt any **two** :
 - (1) Discuss the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1} \sin nx$.
 - (2) If $a_n \to 0$ and $|\Delta a_n| < \infty$, then show that the sine series $\sum a_n \sin nx$ converges everywhere in $[-\pi, \pi]$.
 - (3) Prove or disprove : Every decreasing and bounded sequence is of bounded variation.
- (C) Answer in brief :

(1) Is
$$a_n = \frac{n}{n+1}$$
 convex ?

- (2) True or False : If $a_n \downarrow 0$, then $\sum a_n \cos nx$ converges everywhere.
- (3) True or False : If $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n \log (n+1)}$, then f is continuous.
- 5. (A) Attempt any **one** :
 - (1) Prove that $C \subset L^1 * C$. Is it true that $L^1 * C \subset C$? Give reason for your answer.
 - (2) State the Uniform Boundedness theorem and using it show that there exists a function which is continuous at 0 but whose Fourier series diverges at 0.
 - (B) Attempt any **two** :
 - (1) If f is of bounded variation then show that $\{n \hat{f}(n)\}$ is a bounded sequence.
 - (2) If (b_n) is a sequence of non-negative real numbers converging to 0, then show that there exists a sequence (a_n) of non-negative real numbers such that :

(i)
$$\sum a_n = \infty$$
 (ii) $\sum a_n b_n < \infty$ (iii) $\sum \frac{a_n}{n} < \infty$

(3) If $f \in L^1$ then show that $\sum_{n \neq 0} \frac{\hat{f}(n)e^{inx}}{n}$ converges uniformly.

- (C) Answer in brief :
 - (1) Give a necessary and sufficient condition under which a function $f \in L^2$ can be factorised as g * h with $g, h \in L^2$.
 - (2) State Jordan's theorem.
 - (3) True or False : $L^{1*}L^{\infty} = C$.

4

3

4

7

3