\qquad

XZ-112

April-2013
M.Sc. Sem.-IV

508 - MATHEMATICS
 (Fourier Analysis)

Time : 3 Hours]
[Max. Marks : 70

1. (A) Attempt any one :
(1) Prove that the set off all trigonometric polynomials is dense in C and in L^{p} for $1 \leq \mathrm{p}<\infty$.
(2) Show that C is not dense in L^{∞}.
(B) Attempt any two :
(1) If $1 \leq \mathrm{p}<\mathrm{q}<\infty$, and $\mathrm{f} \in \mathrm{L}^{\mathrm{q}}$, then show that $\|\mathrm{f}\|_{\mathrm{p}} \leq\|f\|_{\mathrm{q}}$.
(2) If f is absolutely continuous then show that $\widehat{\mathrm{Df}}(\mathrm{n})=$ in $\hat{\mathrm{f}}(\mathrm{n})$.
(3) If $f \in L^{1}$ then show that

$$
\hat{\bar{f}}(\mathrm{n})=\overline{\hat{\mathrm{f}}(-\mathrm{n})} .
$$

(C) Answer in brief :
(1) State any one consequence of the uniqueness theorem.
(2) State the Riemann-Lebesgue lemma.
(3) Define convolution in L^{1}.
2. (A) Attempt any one :
(1) Let $f \in L^{1}$. Show that
(i) If $g \in \mathrm{C}^{1}$, then $\mathrm{f} * \mathrm{~g} \in \mathrm{C}^{1}$;
(ii) If g is absolutely continuous then $\mathrm{f} * \mathrm{~g}$ is absolutely continuous.
(2) If γ is a non-trivial complex continuous algebra homomorphisms between L^{1} and \mathbb{C}, then show that there exists a unique positive integer N such that $\gamma(\mathrm{f})=\hat{\mathrm{f}}(\mathrm{N})$, for every $\mathrm{f} \in \mathrm{L}^{1}$.
(B) Attempt any two :
(1) If $f \in L^{1}$ and g is of bounded variation then show that $f * g$ is of bounded variation.
(2) Show that L^{1} does not have identity with respect to convolution.
(3) True or False : If for $\mathrm{f}, \mathrm{g} \in \mathrm{L}^{1}, \mathrm{f} * \mathrm{~g} \equiv 0$, then at least one of the functions f and g is a trigonometric polynomial.
(C) Answer in brief :
(1) Show that convolution is commutative.
(2) Give an example of an idempotent element in L^{1}.
(3) Show that if $\mathrm{f} * \mathrm{f}=\mathrm{f}$, then f is a trigonometric polynomial.
3. (A) Attempt any one :
(1) State and prove localisation principle.
(2) State and prove Fejer's theorem.
(B) Attempt any two :
(1) If $\sum x_{n}$ is summable to 0 then show that the series is cesaro summable to 0 .
(2) Show that the uniqueness theorem follows from Fejer's theorem.
(3) If for a trigonometric series $\sum \mathrm{c}_{\mathrm{n}} \mathrm{e}^{\text {inx }}$, its cesaro means converge in L^{1} norm to f , then show that $\sum \mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{in} x}$ is a Fourier series of f .
(C) Answer in brief.
(1) State any one condition under which Cesaro summability implies summability.
(2) State any one consequence of localization principle.
(3) Show that $\sigma_{N} f=f * F_{N}$.
4. (A) Attempt any one :
(1) If $\mathrm{a}_{\mathrm{n}} \downarrow 0$ and $n \mathrm{a}_{\mathrm{n}}=0(1)$, then show that $\sum \mathrm{a}_{\mathrm{n}} \sin \mathrm{n} x$ converges boundedly in $[-\pi, \pi]$.
(2) If $\left(a_{n}\right)$ is convex and bounded, then prove that $\left(a_{n}\right)$ is decreasing and $n \Delta a_{n} \rightarrow 0$. Further, show that $\left(a_{n}\right)$ is quasi-convex.
(B) Attempt any two :
(1) Discuss the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1} \sin n x$.
(2) If $\mathrm{a}_{\mathrm{n}} \rightarrow 0$ and $\left|\Delta \mathrm{a}_{\mathrm{n}}\right|<\infty$, then show that the sine series $\sum \mathrm{a}_{\mathrm{n}} \sin \mathrm{n} x$ converges everywhere in $[-\pi, \pi]$.
(3) Prove or disprove : Every decreasing and bounded sequence is of bounded variation.
(C) Answer in brief :
(1) Is $a_{n}=\frac{n}{n+1}$ convex ?
(2) True or False : If $a_{n} \downarrow 0$, then $\sum a_{n} \cos n x$ converges everywhere.
(3) True or False : If $\mathrm{f}(x)=\sum_{\mathrm{n}=1}^{\infty} \frac{\sin \mathrm{n} x}{\mathrm{n} \log (\mathrm{n}+1)}$, then f is continuous.
5. (A) Attempt any one :
(1) Prove that $\mathrm{C} \subset \mathrm{L}^{1} * \mathrm{C}$. Is it true that $\mathrm{L}^{1} * \mathrm{C} \subset \mathrm{C}$? Give reason for your answer.
(2) State the Uniform Boundedness theorem and using it show that there exists a function which is continuous at 0 but whose Fourier series diverges at 0 .
(B) Attempt any two :
(1) If f is of bounded variation then show that $\{\mathrm{n} \hat{\mathrm{f}}(\mathrm{n})\}$ is a bounded sequence.
(2) If $\left(b_{n}\right)$ is a sequence of non-negative real numbers converging to 0 , then show that there exists a sequence $\left(a_{n}\right)$ of non-negative real numbers such that :
(i) $\quad \sum \mathrm{a}_{\mathrm{n}}=\infty$
(ii) $\sum \mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}<\infty$
(iii) $\sum \frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{n}}<\infty$
(3) If $f \in L^{1}$ then show that $\sum_{n \neq 0} \frac{\hat{f}(n) e^{i n x}}{n}$ converges uniformly.
(C) Answer in brief :
(1) Give a necessary and sufficient condition under which a function $f \in L^{2}$ can be factorised as $g * h$ with g, $h \in L^{2}$.
(2) State Jordan's theorem.
(3) True or False : $\mathrm{L}^{1 *} \mathrm{~L}^{\infty}=\mathrm{C}$.

