B.Sc. (Sem.-V) Examination 302 CC Statistics May-2017

Time: 3 Hours

[Max. Marks: 70

Paper-302 (statistical inference & design of experiment)

Instructions: (1) Attempt all questions.

- (2) Each carry equal marks.
- (3) Numbers on right hand side indicate marks of the question.
- Q-1 (a) Describe the problem of interval estimation.

[07]

OR

- (a) Clear the difference between statistic and estimator. Explain the general problem of estimation.
- (b) Obtain 100(1- α)% confidence limits intervals for the parameter Θ and σ^2 of the normal distribution. [07]

OR

- (b) Obtain 100(1- α)% confidence limits intervals for the parameter λ of Poisson distribution.
- Q-2 (a) State and prove sufficient condition for consistency.

[07]

OR

- (a) State and prove factorization theorem for discrete case.
- (b) A random sample $X_1, X_2, ... X_n$ is taken from a uniform distribution with parameter θ . Obtain consistent estimator for θ .

OR

(b) Let X_1, X_2 be a random sample from Poisson distribution with parameter Θ . Then show that $T = X_1 + X_2$ is sufficient statistic.

(P.T.O)

Q-3 (a) Explain the method of maximum likelihood estimator and state its properties. [07]

OR

- (a) State and prove Rao-Blackwell theorem.
- Q-3 (b) Let $X_1, X_2, ... X_n$ be a random sample from normal distribution with parameters μ and σ^2 . Obtain maximum likelihood estimates of the σ^2 when μ is known/unknown. [07]

OR

- (b) A random sample $X_1, X_2, ... X_n$ is taken from a normal population with mean zero and variance σ^2 . Obtain MVUE of σ^2 .
- Q-4 (a) Describe the three principles of experimental design in detail. [07]

OR

- (a) Give statistical analysis of two way classified data with one observation per each cell.
- (b) For one way classification show that show that $E(s_t^2) > E(s_E^2)$, if null hypothesis is rejected otherwise they are equal. [07]

OR

- (b) What is completely randomized design? Describe it in brief. State its merits and demerits.
- Q- 5 Answer the following questions:

[14]

- 1) Give an example of a distribution whose M.L.E. is not unbiased.
- 2) Distinguish between estimator and estimate.
- 3) Define most efficient estimator.

- 4) Give an example of a distribution, for which M.L.E. is not unique.
- 5) What is an unbiased estimator?
- 6) State the necessary and sufficient condition for obtaining CRLB.
- 7) Define: Experimental unit.
- 8) Define: Block
- 9) State any one application of CRD.
- 10) State the minimum number of replications required for any design of experiment.
- 11) Give formulae of critical difference.
- 12) State any one application of ANOVA.
- 13) Name the tests that are used in ANOVA technique.
- 14) Define comparative experiment.

B.Sc. (Sem.-V) Examination 301 CC Statistics May-2017

Time: 3 Hours

[Max. Marks: 70

Instructions 1. All questions are compulsory and carry equal marks.

- 2. Statistical tables and graph papers will be provided on request.
- 3. Use of Scientific calculator is allowed
- Q. 1 (a) For Geometric Distribution, derive the cumulative distribution function.

OR

- (a) For Negative binomial distribution, show that mean and variance are rq/p and rq/p^2 respectively.
- (b) Products produced by a machine has a 3% defective rate. What is the probability that (i) first defective occurs in the fifth item inspected, (ii) the first defective occurs in the first five inspections?

OR

- (b) State probability mass function of negative binomial distribution. Derive recurrent relation for central moments of negative binomial distribution.
- Q. 2 (a) Define term: Truncation. State its different forms. Hence or otherwise, explain, in brief, truncation from right.

OR

- (a) Derive Truncated Binomial Distribution, truncated at X = 0. Hence or otherwise its mean and variance.
- (b) Derive Truncated Poisson distribution, truncated at X = 0. Obtain its variance.

OR

- (b) If X follows normal distribution with mean μ and standard deviation σ , derive the truncated normal distribution from left.
- **Q. 3** (a) Define power series distribution. Derive poisson distribution and its mean as a special case of power series distribution.

OR

- (a) In usual notations, derive the recurrent relation for the raw moments of power series distribution.
- (b) For power series distribution, in usual notations, show that

$$\mu_2^{\prime} = \frac{\theta^2 f''(\theta)}{f(\theta)} + \mu_1^{\prime}$$

OR

- (b) For a log series distribution, obtain first two cumulants using power series distribution.
- Q. 4 (a) Obtain the distribution of the smallest and the largest order statistics.

OR

(a) If probability distribution function a random variable X is $F(x) = \begin{cases} 0, x > 0 \\ x, 0 \le x \le 1 \\ 1, x > 1 \end{cases}$

then obtain the distribution of the largest order statistics and a sample range.

(b) Define order statistics. State use of ordered statistics.

(b) If probability distribution function of a random variable X is

$$f(x) = \begin{cases} e^{-x}, & x > \infty \\ 0, & \text{otherwise} \end{cases}$$

obtain the distribution of the smallest order statistics and a sample range.

O. 5 Answer the following questions, in brief.

- (a) State the reason, why negative binomial distribution is known as inverse binomial Distribution?
- (b) State the limiting form of negative binomial distribution.
- (c) State the moment generating function of geometric distribution and write the first two raw moments of it.
- (d) State assumptions while deriving geometric distribution.
- (e) State the probability density function of rth order statistics.
- (f) Let Y₁<Y₂<Y₃<Y₄<Y₅ be the order statistics of 5 independent observations from rectangular distribution R(2,5). Compute the probability that Y_1 is less than 3.
- (g) State the role of power series distribution.

B.Sc. (Sem.-V) Examination 304 CC Statistics May-2017

Time: 3 Hours

IMax. Marks: 70

- Define Chisquane variate and desire Q1104 the probability deneity function of chirogram distribution with in-degree of freedom.
 - (a) Derive Moment generalisy function of appropria distribution and hence find its reconstant may be
 - (b) aprile a Short mote on colorsquare productivity lands
 - independent their others the distributes of it
- Q200) Proce that I Vare is a travaliste with (n-2) degree of frection
 - 9 Obtain the expression for even andered Central moment for testablisher with with
 - (b) Define stratent t distribution, and decire
 - (b) Discuss two application of todistribution with example.
- Q 300 Define Francise and derive the problem to af F. distribution on concerned by Snedered
 - es Define Fishes's -2 dishabilities and out on mst of 2. databates.
 - (a) Derive the mode of Falishiporties of 1 Comment on it. (P. 1.0)

Desire relation between

(i) I and 12 distributions

(ii) F and t distributions

Co. 4 my Define and Caplain Concept of Compound distributer?

- a) Derdre originalise Binnerical distribution as compound distribution of Foresson and Chamma distribution
- (b) White a destailed detailed note on Compound Binomial distribution."

by Let X be a roundom variate having poisson distributes with parameter a and a follows. bearing distributes. Find unconditional distributes of X. Also Isual Means and versionce of unconditional distributes, of X.

E.S Angua the Johnson guestiers in Shad

- (1) State the situation when Yale's connection &
 - (2) Give two Application of to distribution,
 - (3) If XIVF (my) Kien give Pott of Y= 1.
- (4) Give two Apolication of Fradishibition
- (5) State was of chi-equane statistis.
- (6) State two application of 2-diationalismon
- (7) To test the significance difference between two psyndelm vorsiones: state the test states the fest procedure.

XTX

B.Sc. (Sem.-V) Examination S.E. 305 Statistics A Ecology May-2017

Time: 3 Hours]

[Max. Marks: 70

- Instructions 1. All questions are compulsory. Total marks: 70
 - 2. Each question carries equal marks.
 - 3. Statistical tables and graph papers will be provided on request.
 - 4. Use of Scientific calculator is allowed.
- O. 1 (a) What is force mortality? Also, define stable population and stationary population.

OR

- (a) Write a note on Leslie Matrix.
- (b) With reference to Statistical Ecology, explain in brief: Life table.

- (b) Give measures to protect biodiversity.
- Q. 2 (a) Explain in detail: Poisson Forest, Regular Spatial Pattern

- (a) State probability density function of log normal distribution. How it differs from Normal distribution?
- (b) State the probability mass function of Geometric Distribution. State applications of Geometric distribution to ecology.

OR

- (b) Write a note on Simpson's index.
- Q. 3 (a) Describe capture recapture model in context to Statistical Ecology.

- (a) State meaning of different terms used in life table. Give their interrelationship
- (b) Explain the procedure of calculating Shannon's index.

- (b) Explain logistic growth model, in context to ecology
- Q. 4 (a) Explain exponential model. Give its applications in ecology.

OR

- (a) Define term: Ecology. State different fields where ecology is applied from statistical view point.
- (b) Explain Gompertz's model. State its uses.

(b) State properties of exponential model. Also, state it's usefulness in Statistical Ecology.

O. 5 ANSWER THE FOLLOWING:

- (a) What is biodiversity?
- (b) State two uses of biodiversity in ecology.
- (c) Give two names of smoothing process.
- (d) What is linear growth model?
- (e) Give one limitation, each of exponential and logistics distributions.
- (f) State scope Gompertz's model.
- (g) What do you call an estimator of population size

___*__*__

2305E832

Candidate's	Seat	No	
Candidate 5	Scat	TAO	•

B.Sc. (Sem.-V) Examination S.E. 305 B Statistics Using R

Time: 3 Hours

May-2017

[Max. Marks: 70

Q-1(a) Explain graphics with R in detail.

[7]

OR

(a) Explain R as a statistical software and calculator.

[7]

(b) The following table gives the no. of students according to their pocket money. Draw histogram and frequency polygon on the same graph [7]

Pocket Money(in Rs.)	No of students
20-29	10
30-39	24
40-49	18
50-59	12
60-69	8
70-79	5
80-89	3
	

OR

- (b) Prepared a frequency distribution for following data. [7] 62 65 45 58 25 23 65 88 45 47 19 28 29 96 85 96 64 92 34 38 76 98 56 85 65 91 82 72 76 64 42 38 96 85 41 25 23 68 61 54 72 32 75 26 18 29 18 43 18 65 68 96 75 82 43 53 83 92 65 37 39 64
- Q-2 (a) Obtain probability distribution of X, where X is number of showing when A six-sided symmetric die is rolled. Simulate random sample of sizes 100, 200 and 500. [7]

OR

- (a) A lot of 50 chickens 0f 6 females. If 3 chickens are sleeted at random without replacement, plot the probability distribution and cumulative distribution function of number of female chickens in the sample.
- (b) Draw a random samples of sizes 100 and 5000 from binomial distribution with parameters p=0.5 and n=10. [7]

OR

(b) Draw a random samples of sizes 200 from N (5, 2) distribution, also find mean and sd of the sample. [7]

(P.T.O)

E832-2

Q-3 (a) Draw scatter plots of (X1, Y1) and (X2, Y2) for the following data. [7]

Y1	X1	Y2	X2
8.04	10	9.14	10
6.95	8	8.14	8
7.58	13	8.74	13
8.81	9	8.77	9
8.33	11	9.26	11
9.96	14	8.10	14
7.24	6	6.13	6

OR

(a)Obtain least squares equation of line of regression of X on Y for the

following table. The maximum score in each test was 50. 71 Scores in 34 37 32 35 36 37 39 35 37 32 **Botany Scores** in 34 35 40 42 36 38 39 33 32 39 Zoology

(b) Compute Pearson's and Spearman's correlation coefficient for the following data:

7.7	T = 1 =	T =		γ			,			[/]
X	5.12	6.18	6.77	6.65	6.36	5.90	5.48	6.02	10.34	8 51
Y	2.30	2.54	2.95	3.77	4.18	5.31	5.53	ļ. <u> </u>	9 48	14 20
							17.20			

OR

(b) The following data pertain to the resistance(x) in (ohms) and the failure times(y) (minutes) of 24 overloaded resistors. Obtain a line of regression of y on x and draw a scatter plot

OI	n x and	draw	a scatt	er plot	•						ſ	[7]
x	43	29	44	33	47	34	31	48	34	46	37	ָרָ רְ
ļ	36	39	36	28	40	42	33	46	28	48	35	
у	32	20	45	35	22	46	28	26	37	33	46	1
L	<u> 36</u>	33	21	44	26	45	39	25	36	22	45	

Q-4 (a)Fit Binomial distribution and test goodness of fit for the following data:[7]

X	0	1	2	3	4
<u>f</u>	5	20	45	20	10

E832-3

(a) Fit Poisson distribution and test goodness of fit for the following data: [7]

	1				5 autu.[/]
X	0	1	2	3	4 or more
f	6	8	12	4	3

(a) Simulate one random sample each from normal (1,1) and exp(1) distribution. Draw box plots and qq normal plots to judge whether the parent population are normal. [7]

OR

(b) Suppose three drying formulas for curing a glue are studied and the following drying times are observed. [7]

Sr. No	Formula	Observations
1	A	11,13,10,8,8
2	В	14,13,11,14
3	C	3,1,4,2,4,4

Carry out Analysis of Variance using R - commands.

Q-5 Answer the following:

[14]

- (1) Explain matrix function with example.
- (2) Give name of any two in-built function with example.
- (3) Explain c function with example.
- (4) How to use data.frame function in R?
- (5) Give any two uses of R- software.
- (6) If $X \sim N(0,1)$ find the P(X>2) using R function.
- (7) If $X \sim P(2.5)$ find the P(X>8) using R function.

2005E769

Candidate's Seat No :

B.Sc. (Sem.-V) Examination 303 CC Statistics

Time: 3 Hours May-2017 [Max. Marks: 70]

Instruction: Attempt all questions.

Q.1(a) What are the methods for selecting a random sample? Explain any one.

OR

(a) Show that in simple random sampling, wor, the sample mean \hat{y} is an unbiased estimator of population mean \overline{Y} and its sampling variance is given by

$$V(\bar{v}) = (1 - n/N)S^2/n$$
 where $S^2 = N\sigma^2/(N-1)$.

(b)Discuss confidence limits for population mean and total.

OR

- (b) Suggest an unbiased estimator of population proportion in simple random sampling without replacement and derive its variance. Also, obtain unbiased estimator of this variance.
- Q.2 (a) What do you mean by strata? Explain principles of stratification.

OR

(a) Show in usual notations, if f.p.c. is ignored then

$$V_{opt} \le V_{prop} \le V_{SR}$$
.

(b)Suggest an unbiased estimator of population mean in stratified random sampling without replacement and derive its variance. Also, obtain unbiased estimator of this variance.

OR

- (b) For optimum allocation when sample size n is fixed, derive the formula for variance for proportion case in stratified sampling.
- Q.3(a) Discuss the situations under which systematic samples are preferred to other types of samples in censuses and surveys.

OR

- (a) Give comparison of systematic sampling with stratified sampling.
- (b) In a finite population of size N, show that systematic sampling will be more efficient than random sampling with equal probability, wor, if the intra-class correlation coefficient $\rho < -1/(N-1)$.

OR

(b)Obtain an unbiased estimator of population mean in systematic sampling and derive its sampling variance.

1

Q.4 (a) Define two stage sampling. Also describe a situation where it can be used.

OR

- (a) In usual notations obtain m_{opt} and n_{opt} in two stage sampling.
- (b) Suggest an unbiased estimator of population total in two- stage sampling. Obtain its variance using SRSWR at both the stages. Also, obtain an unbiased estimator of this variance.

OR

(b)Suggest an unbiased estimator of population total in two-stage sampling. Obtain its variance using SRSWOR at both the stages. Also, obtain an unbiased estimator of this variance.

Q.5 Answer the following:

- (i) Define standard error and relative standard error.
- (ii) Define f.p.c. and sampling fraction.
- (iii) What do you understand by estimation of sample size?
- (iv) Define stratified sampling.
- (v) What do you mean by equal allocation?
- (vi) Discuss advantages of systematic sampling.
- (vii) Discuss advantages of two stage sampling.
