

XW-112

April-2013

M.Sc. (Sem. II) 407 - MATHEMATICS (Differential Geometry – I)

Time: 3 Hours]

1. (A) Let $\bar{r}(t)$ be the logarithmic spiral

 $\overline{\mathbf{r}}(\mathbf{t}) = (\mathbf{e}^{\mathbf{t}} \cos(\mathbf{t}), \, \mathbf{e}^{\mathbf{t}} \sin(\mathbf{t})).$

Find the arc-length of \overline{r} starting at $\overline{r}(0) = (1, 0)$.

OR

Calculate the arc-length of the catenary

 $\overline{\mathbf{r}}(\mathbf{t}) = (\mathbf{t}, \cosh(\mathbf{t}))$ starting at the point (0, 1).

(B) Answer briefly any **two** :

(i) Is the curve \overline{r} given below a unit speed curve ?

$$\overline{\mathbf{r}}(t) = \left(\frac{5}{13}\sin(t), \frac{12}{13}\sin(t), 1 - \cos(t)\right).$$

- (ii) Show that the length of the twisted cubic $\bar{r}(t) = (t, t^2, t^3)$, between the points (0, 0, 0) and (1, 1, 1) is less than 4.
- (iii) Sketch the curve $\bar{r}(t) = (t, \log (t)), 0 < t < \infty$. Sketch the curve $\bar{\delta}(u) = (e^u, u), -\infty < u < \infty$. How are these parametrized curves related ?
- (C) Answer very briefly all three :
 - (i) Sketch the curve $\overline{r}(t) = (-\cos(t), \sin(t)), 0 < t < \frac{\pi}{2}$.
 - (ii) Parametrite the line passing through the points (1, 2, 3) and (2, 3, 4).

1

(iii) Is the curve \bar{r} given below regular?

 $\overline{\mathbf{r}}(\mathbf{t}) = (\mathbf{t}^2, \mathbf{t}^3), -\infty < \mathbf{t} < \infty.$

7

[Max. Marks: 70

2. (A) Compute k, τ , \overline{t} , \overline{n} and \overline{b} for the curve

$$\overline{\mathbf{r}}(\mathbf{t}) = \left(\frac{\mathbf{t}}{\sqrt{2}}, \ \frac{1}{3} (1+\mathbf{t})^{3/2}, \ \frac{1}{3} (1-\mathbf{t})^{3/2}\right).$$
OR

Compute k, τ , \overline{t} , \overline{n} and \overline{b} for the curve

$$\overline{\mathbf{r}}(t) = \left(\frac{20}{29}\cot(t), \frac{-21}{29}\cot(t), 1 - \sin(t)\right)$$

- (B) Answer briefly any two :
 - (i) Is the curve given below a planar curve ?

$$\overline{\mathbf{r}}(\mathbf{t}) = \left(\frac{\mathbf{t}^2 - 1}{\mathbf{t}}, \, \mathbf{t} + 1, \, \frac{1 + \mathbf{t}}{\mathbf{t}}\right).$$

- (ii) Give an example of a unit speed plane curve whose signed curvature is -1 at every point.
- (iii) Suppose $\bar{r}(s)$ is a unit speed curve and $\bar{\alpha}(s)$ is the curve given by $\bar{\alpha}(s) = 2\bar{r}s$. How are the curvatures of $\bar{\alpha}$ and $\bar{\gamma}$ related at points with the same value of the parameter s?
- (C) Answer very briefly all three :
 - (i) Write down (without proof) a formula for the torsion τ of a regular curve $\overline{r}(t)$ in \mathbb{R}^3 .
 - (ii) Write down (without proof) the Frenet-Serret equations.
 - (iii) Give a parametrization for a circular helix.
- 3. (A) Show that the level surface

$$\frac{x^2}{2^2} + \frac{y^2}{3^2} + \frac{z^2}{5^2} = 1$$
 is a smooth surface.

Roughly sketch this surface.

OR

Find the equation of the tangent plane to the surface

$$\bar{\sigma}(\theta, \phi) = ([3 + \cos(\theta)] \cos(\phi), [3 + \cos(\theta)] \sin(\phi), \sin(\theta))$$

at the point (-3, 0, 1).

4

7

3

- (B) Answer briefly any **two** :
 - (i) Show that an open disc in the *xy*-plane is a smooth surface.
 - (ii) Give a parametrization $\bar{\sigma}$ (θ , ϕ) for the unit sphere in terms of the latitude θ and the longitude ϕ .
 - (iii) Show that the unit sphere cannot be covered by a single surface patch.
- (C) Answer very briefly all **three** :
 - (i) Give a parametrization for the plane

$$S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z - 5 = 0\}.$$

- (ii) Define the tangent space at a point P of a surface S.
- (iii) Define the standard unit normal of the surface patch $\bar{\sigma}$ at the point $P = \bar{\sigma} (u_0, v_0)$.
- 4. (A) Identify the quadric given by

 $x^2 - 2y^2 + 6x + 4y + z = 5,$

by first transforming its equation.

OR

Define a triply orthogonal system of surfaces.

Show that the following form a triply orthogonal system : the planes parallel to the *xy*-plane, the planes parallel to the *yz*-plane, the planes parallel to the *xz*-plane.

- (B) Answer briefly any **two** :
 - (i) Define a generalized cylinder and give its parametrization (without proof).
 - (ii) Define a generalised cone and give its parametrization (without proof).
 - (iii) Define a ruled surface and give its parametrization(without proof).

(C) Answer very briefly all **three** :

- (i) Give an equation of a hyperboloid of one sheet.
- (ii) Give an example of a one-parameter family of spheres.
- (iii) Give a parametrization $\bar{\sigma}(u, v)$ for the surface of revolution obtained by rotating the profile curve $\bar{r}(u) = (f(u), 0, g(u))$ around the z-axis. (Do not prove).

3

3

4

3

5. (A) Calculate the first fundamental forms of the following surfaces :

(i) $\bar{\sigma}(u, v) = (u - v, u + v, u^2 + v^2),$

(ii) $\overline{\sigma}(u, v) = (\cosh(u), \sinh(u), v).$

OR

Define an isometry of two surfaces S₁ and S₂.

Show that
$$S_1 = \{(x, y, 0) \in \mathbb{R}^3 : 0 < x < 2\pi \}$$

and $S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, x \neq 1\}$ are isometric.

- (B) Answer briefly any **two** :
 - (i) Define a conformal map between two surfaces S_1 and S_2 .
 - (ii) Determine the area of the part of the paraboloid $z = x^2 + y^2$ with $z \le 1$.
 - (iii) Give (without proof) a necessary and sufficient condition for $f: S_1 \rightarrow S_2$ to be an isometry, in terms of the first fundamental form.
- (C) Answer very briefly all three :
 - (i) Define an equiareal map between two surfaces S_1 and S_2 .
 - (ii) State (without proof) Archimedes theorem.
 - (iii) Express $\| \bar{\sigma} \times \bar{\sigma} \|$ in terms of E, F, and G. (without proof).

4