XW-112

April-2013

M.Sc. (Sem. II)
 407-MATHEMATICS
 (Differential Geometry - I)

Time: 3 Hours]
[Max. Marks: 70

1. (A) Let $\overline{\mathrm{r}}(\mathrm{t})$ be the logarithmic spiral

$$
\overline{\mathrm{r}}(\mathrm{t})=\left(\mathrm{e}^{\mathrm{t}} \cos (\mathrm{t}), \mathrm{e}^{\mathrm{t}} \sin (\mathrm{t})\right) .
$$

Find the arc-length of $\overline{\mathrm{r}}$ starting at $\overline{\mathrm{r}}(0)=(1,0)$.
OR

Calculate the arc-length of the catenary

$$
\overline{\mathrm{r}}(\mathrm{t})=(\mathrm{t}, \cosh (\mathrm{t})) \text { starting at the point }(0,1) \text {. }
$$

(B) Answer briefly any two :
(i) Is the curve $\overline{\mathrm{r}}$ given below a unit speed curve ?

$$
\overline{\mathrm{r}}(\mathrm{t})=\left(\frac{5}{13} \sin (\mathrm{t}), \frac{12}{13} \sin (\mathrm{t}), 1-\cos (\mathrm{t})\right) .
$$

(ii) Show that the length of the twisted cubic

$$
\overline{\mathrm{r}}(\mathrm{t})=\left(\mathrm{t}, \mathrm{t}^{2}, \mathrm{t}^{3}\right) \text {, between the points }(0,0,0) \text { and }(1,1,1) \text { is less than } 4 \text {. }
$$

(iii) Sketch the curve $\overline{\mathrm{r}}(\mathrm{t})=(\mathrm{t}, \log (\mathrm{t})), 0<\mathrm{t}<\infty$. Sketch the curve $\bar{\delta}(\mathrm{u})=\left(\mathrm{e}^{\mathrm{u}}, \mathrm{u}\right)$, $-\infty<\mathrm{u}<\infty$. How are these parametrited curves related ?
(C) Answer very briefly all three :
(i) Sketch the curve $\overline{\mathrm{r}}(\mathrm{t})=(-\cos (\mathrm{t}), \sin (\mathrm{t})), 0<\mathrm{t}<\frac{\pi}{2}$.
(ii) Parametrite the line passing through the points $(1,2,3)$ and $(2,3,4)$.
(iii) Is the curve $\overline{\mathrm{r}}$ given below regular ?

$$
\overline{\mathrm{r}}(\mathrm{t})=\left(\mathrm{t}^{2}, \mathrm{t}^{3}\right),-\infty<\mathrm{t}<\infty .
$$

2. (A) Compute $\mathrm{k}, \tau, \overline{\mathrm{t}}, \overline{\mathrm{n}}$ and $\overline{\mathrm{b}}$ for the curve
$\overline{\mathrm{r}}(\mathrm{t})=\left(\frac{\mathrm{t}}{\sqrt{2}}, \frac{1}{3}(1+\mathrm{t})^{3 / 2}, \frac{1}{3}(1-\mathrm{t})^{3 / 2}\right)$.

OR

Compute $\mathrm{k}, \tau, \overline{\mathrm{t}}, \overline{\mathrm{n}}$ and $\overline{\mathrm{b}}$ for the curve
$\overline{\mathrm{r}}(\mathrm{t})=\left(\frac{20}{29} \operatorname{cost}(\mathrm{t}), \frac{-21}{29} \operatorname{cost}(\mathrm{t}), 1-\sin (\mathrm{t})\right)$
(B) Answer briefly any two :
(i) Is the curve given below a planar curve ?

$$
\overline{\mathrm{r}}(\mathrm{t})=\left(\frac{\mathrm{t}^{2}-1}{\mathrm{t}}, \mathrm{t}+1, \frac{1+\mathrm{t}}{\mathrm{t}}\right) .
$$

(ii) Give an example of a unit speed plane curve whose signed curvature is -1 at every point.
(iii) Suppose $\overline{\mathrm{r}}(\mathrm{s})$ is a unit speed curve and $\bar{\alpha}(\mathrm{s})$ is the curve given by $\bar{\alpha}(\mathrm{s})=2 \overline{\mathrm{r}}$. How are the curvatures of $\bar{\alpha}$ and $\bar{\gamma}$ related at points with the same value of the parameter s ?
(C) Answer very briefly all three :
(i) Write down (without proof) a formula for the torsion τ of a regular curve $\overline{\mathrm{r}}(\mathrm{t})$ in \mathbb{R}^{3}.
(ii) Write down (without proof) the Frenet-Serret equations.
(iii) Give a parametrization for a circular helix.
3. (A) Show that the level surface

$$
\begin{equation*}
\frac{x^{2}}{2^{2}}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{5^{2}}=1 \text { is a smooth surface. } \tag{7}
\end{equation*}
$$

Roughly sketch this surface.

OR

Find the equation of the tangent plane to the surface

$$
\bar{\sigma}(\theta, \phi)=([3+\cos (\theta)] \cos (\phi),[3+\cos (\theta)] \sin (\phi), \sin (\theta))
$$

at the point $(-3,0,1)$.
(B) Answer briefly any two :
(i) Show that an open disc in the $x y$-plane is a smooth surface.
(ii) Give a parametrization $\bar{\sigma}(\theta, \phi)$ for the unit sphere in terms of the latitude θ and the longitude ϕ.
(iii) Show that the unit sphere cannot be covered by a single surface patch.
(C) Answer very briefly all three :
(i) Give a parametrization for the plane

$$
\mathrm{S}=\left\{(x, \mathrm{y}, \mathrm{z}) \in \mathbb{R}^{3}: x+2 \mathrm{y}+3 \mathrm{z}-5=0\right\}
$$

(ii) Define the tangent space at a point P of a surface S .
(iii) Define the standard unit normal of the surface patch $\bar{\sigma}$ at the point $\mathrm{P}=\bar{\sigma}\left(\mathrm{u}_{0}, \mathrm{v}_{0}\right)$.
4. (A) Identify the quadric given by

$$
x^{2}-2 y^{2}+6 x+4 y+z=5
$$

by first transforming its equation.

OR

Define a triply orthogonal system of surfaces.
Show that the following form a triply orthogonal system :
the planes parallel to the $x y$-plane, the planes parallel to the yz-plane, the planes parallel to the $x z$-plane.
(B) Answer briefly any two :
(i) Define a generalized cylinder and give its parametrization (without proof).
(ii) Define a generalised cone and give its parametrization (without proof).
(iii) Define a ruled surface and give its parametrization(without proof).
(C) Answer very briefly all three :
(i) Give an equation of a hyperboloid of one sheet.
(ii) Give an example of a one-parameter family of spheres.
(iii) Give a parametrization $\bar{\sigma}(u, v)$ for the surface of revolution obtained by rotating the profile curve $\overline{\mathrm{r}}(\mathrm{u})=(\mathrm{f}(\mathrm{u}), 0, \mathrm{~g}(\mathrm{u})$) around the z -axis. (Do not prove).
5. (A) Calculate the first fundamental forms of the following surfaces :
(i) $\bar{\sigma}(u, v)=\left(u-v, u+v, u^{2}+v^{2}\right)$,
(ii) $\bar{\sigma}(u, v)=(\cosh (u), \sinh (u), v)$.

OR

Define an isometry of two surfaces S_{1} and S_{2}.
Show that $\mathrm{S}_{1}=\left\{(x, y, 0) \in \mathbb{R}^{3}: 0<x<2 \pi\right\}$
and $\mathrm{S}_{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1, x \neq 1\right\}$ are isometric.
(B) Answer briefly any two :
(i) Define a conformal map between two surfaces S_{1} and S_{2}.
(ii) Determine the area of the part of the paraboloid $\mathrm{z}=x^{2}+\mathrm{y}^{2}$ with $\mathrm{z} \leq 1$.
(iii) Give (without proof) a necessary and sufficient condition for $\mathrm{f}: \mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$ to be an isometry, in terms of the first fundamental form.
(C) Answer very briefly all three :
(i) Define an equiareal map between two surfaces S_{1} and S_{2}.
(ii) State (without proof) Archimedes theorem.
(iii) Express $\| \underset{\mathrm{u}}{\bar{\sigma}} \times \underset{\mathrm{v}}{\bar{\sigma}} \mid$ in terms of E, F, and G . (without proof).

