Seat No. : _____

AE-118

April-2016

M.Sc., Sem.-IV 509-EA : Mathematics (Mathematical Methods)

Time: 3 Hours]

1. (a) Attempt any **one** :

- (i) Find a basis of solutions of the differential equation $xy'' + 3y' + 4x^3y = 0$.
- Using the indicated substitutions, reduce the following equation to Bessel's differential equation and find a general solution in terms of Bessel functions.

$$x^{2}y'' + \frac{1}{4}\left(x + \frac{3}{4}\right)y = 0$$
 (y = u \sqrt{x} , $\sqrt{x} = z$)

(b) Attempt any **two** :

(i) Find a power series solution in powers of x of the equation (x - 2)y' = xy.

(ii) Show that
$$J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$$
.

- (iii) Express $J_3(x)$ in terms of $J_0(x)$ and $J_1(x)$.
- (c) Answer very briefly :
 - (i) Why can the equation y' = (y/x) + 1 not be solved by a power series in powers of x ?
 - (ii) Find the indicial equation and its roots for the equation $x^2y'' + x^3y' + (x^2 - 2)y = 0$
 - (iii) What is the value of $J_{1/2}(\pi)$?
- 2. (a) Attempt any **one** :
 - (i) Find the inverse Laplace transform of $\frac{9}{s^2} \left(\frac{s+1}{s^2+9} \right)$.
 - (ii) Applying convolution, solve the initial value problem $y'' + 2y' + 2y = 5u(t - 2\pi) \sin t$; y(0) = 1, y'(0) = 0.

AE-118

[Max. Marks: 70

4

7

3

7

P.T.O.

- (b) Attempt any **two** :
 - (i) Using first shifting theorem, find the laplace transform of $5e^{2t} \sinh 2t$.
 - (ii) Find the Laplace transform of $te^{-t} \cos t$.

(iii) Find
$$L^{-1}\left\{\frac{s}{(s^2-9)^2}\right\}$$
.

- (c) Answer very briefly :
 - (i) State the existence theorem for Laplace transform.
 - (ii) What is the Laplace transform of $\delta(t \pi)$?
 - (iii) Write the function

$$f(t) = \begin{cases} 2 & \text{if } 0 < t < \pi \\ 0 & \text{if } \pi < t < 2\pi \\ \sin t & \text{if } t > 2\pi \end{cases}$$

in terms of unit step functions.

- 3. (a) Attempt any **one** :
 - (i) Find the Fourier series of the function

$$f(x) = \begin{cases} k & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 0 & \text{if } \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$$

Deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$.

(ii) Find the Fourier cosine and sine integrals of

$$f(x) = \begin{cases} x & \text{if } 0 < x < a \\ 0 & \text{if } x > a \end{cases}$$

- (b) Attempt any **two** :
 - (i) Find the Fourier cosine transform of

$$f(x) = \begin{cases} x^2 & \text{if } 0 < x < 1\\ 0 & \text{if } x > 1 \end{cases}$$

- (ii) Find the Fourier sine transform of e^{-x} .
- (iii) Find the Fourier transform of

$$f(x) = \begin{cases} e^{-kx} & \text{if } x > 0 \ (k > 0) \\ 0 & \text{if } x < 0 \end{cases}$$

AE-118

3

4

4

7

- (c) Answer very briefly :
 - (i) What is the fundamental period of $\cos 4x$?
 - (ii) Give an example of a function which is neither even nor odd. Justify your answer.
 - (iii) State Parseval's identity.
- 4. (a) Attempt any **one** :
 - (i) Find the inverse Z-transform of $\frac{9z^3}{(3z-1)^2(z-2)}$ by residue method.
 - (ii) Solve the following difference equation by Z-transform.

$$y_{k+3} - 3y_{k+2} + 3y_{k+1} - y_k = U(k), y_0 = y_1 = y_2 = 0,$$

where

$$U(k) = \begin{cases} 0 & \text{if } k < 0 \\ 1 & \text{if } k \ge 0 \end{cases}$$

- (b) Attempt any **two** :
 - (i) Prove that if $Z[{f(k)}] = F(z)$, then $Z[{a^k f(k)}] = F\left(\frac{z}{a}\right)$.
 - (ii) Find the Z-transform of sin 2k, $k \ge 0$.
 - (iii) Find the inverse Z-transform of $\frac{3z}{(z-2)}$ when |z| < 2.
- (c) Answer very briefly :
 - (i) State initial value theorem.
 - (ii) What is the order of the difference equation $6y_{k+2} 2y_{k+1} + y_{k-1} = 0$?
 - (iii) What is the Z-transform of $f(k) = \frac{1}{3^k}$, $(-4 \le k \le 5)$?
- 5. (a) Attempt any **one** :
 - (i) Prove that :

$$H_{n}\left\{\frac{df}{dx}\right\} = -s\left[\frac{n+1}{2n}H_{n-1}\left\{f(x)\right\} - \frac{n-1}{2n}H_{n+1}\left\{f(x)\right\}\right]$$

$$\int_{0}^{a} x^{3} J_{0}(sx) dx = \frac{a^{2}}{s^{2}} \left[2J_{0}(as) + \left(as - \frac{4}{as} \right) J_{1}(as) \right]$$

3

AE-118

7

3

4

7

- (b) Attempt any **two** :
 - (i) Show that $H{f(ax)} = a^{-2}H\left(\frac{s}{a}\right)$.
 - (ii) Find the Hankel transform of $\frac{e^{-ax}}{x}$, n = 1
 - (iii) Find H(x^n), n > -1 and $xJ_n(s_i x)$ is the kernel of the transform.
- (c) Answer very briefly :

(i) What is the value of the integral
$$\int_{0}^{\infty} \frac{e^{-ax}}{x} J_{1}(sx) dx ?$$

(ii) What is the value of the integral
$$\int_{0}^{\infty} xe^{-ax} J_{0}(sx) dx ?$$

(iii) Find $H^{-1}[e^{-as}]$, when n = 0.

3