Seat No. : \qquad

AE-118

April-2016
M.Sc., Sem.-IV

509-EA : Mathematics
(Mathematical Methods)
Time: 3 Hours]
[Max. Marks : 70

1. (a) Attempt any one :
(i) Find a basis of solutions of the differential equation $x y^{\prime \prime}+3 y^{\prime}+4 x^{3} y=0$.
(ii) Using the indicated substitutions, reduce the following equation to Bessel's differential equation and find a general solution in terms of Bessel functions.

$$
x^{2} y^{\prime \prime}+\frac{1}{4}\left(x+\frac{3}{4}\right) y=0 \quad(y=u \sqrt{x}, \sqrt{x}=z)
$$

(b) Attempt any two :
(i) Find a power series solution in powers of x of the equation $(x-2) y^{\prime}=x y$.
(ii) Show that $\mathrm{J}_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)$.
(iii) Express $\mathrm{J}_{3}(x)$ in terms of $\mathrm{J}_{0}(x)$ and $\mathrm{J}_{1}(x)$.
(c) Answer very briefly:
(i) Why can the equation $y^{\prime}=(y / x)+1$ not be solved by a power series in powers of x ?
(ii) Find the indicial equation and its roots for the equation

$$
x^{2} y^{\prime \prime}+x^{3} y^{\prime}+\left(x^{2}-2\right) y=0
$$

(iii) What is the value of $\mathrm{J}_{1 / 2}(\pi)$?
2. (a) Attempt any one :
(i) Find the inverse Laplace transform of $\frac{9}{s^{2}}\left(\frac{s+1}{s^{2}+9}\right)$.
(ii) Applying convolution, solve the initial value problem

$$
\mathrm{y}^{\prime \prime}+2 \mathrm{y}^{\prime}+2 \mathrm{y}=5 \mathrm{u}(\mathrm{t}-2 \pi) \sin \mathrm{t} ; \mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0 .
$$

(b) Attempt any two :
(i) Using first shifting theorem, find the laplace transform of $5 \mathrm{e}^{2 \mathrm{t}} \sinh 2 \mathrm{t}$.
(ii) Find the Laplace transform of $\mathrm{te}^{-\mathrm{t}} \cos \mathrm{t}$.
(iii) Find $L^{-1}\left\{\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}-9\right)^{2}}\right\}$.
(c) Answer very briefly:
(i) State the existence theorem for Laplace transform.
(ii) What is the Laplace transform of $\delta(\mathrm{t}-\pi)$?
(iii) Write the function

$$
f(t)= \begin{cases}2 & \text { if } 0<t<\pi \\ 0 & \text { if } \pi<t<2 \pi \\ \sin t & \text { if } t>2 \pi\end{cases}
$$ in terms of unit step functions.

3. (a) Attempt any one :
(i) Find the Fourier series of the function

$$
f(x)= \begin{cases}\mathrm{k} & \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \\ 0 & \text { if } \frac{\pi}{2}<x<\frac{3 \pi}{2}\end{cases}
$$

Deduce that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+-$ \qquad $=\frac{\pi}{4}$.
(ii) Find the Fourier cosine and sine integrals of

$$
f(x)= \begin{cases}x & \text { if } 0<x<\mathrm{a} \\ 0 & \text { if } x>\mathrm{a}\end{cases}
$$

(b) Attempt any two :
(i) Find the Fourier cosine transform of

$$
f(x)= \begin{cases}x^{2} & \text { if } 0<x<1 \\ 0 & \text { if } x>1\end{cases}
$$

(ii) Find the Fourier sine transform of e^{-x}.
(iii) Find the Fourier transform of

$$
f(x)= \begin{cases}\mathrm{e}^{-\mathrm{k} x} & \text { if } x>0(\mathrm{k}>0) \\ 0 & \text { if } x<0\end{cases}
$$

(c) Answer very briefly:
(i) What is the fundamental period of $\cos 4 x$?
(ii) Give an example of a function which is neither even nor odd. Justify your answer.
(iii) State Parseval's identity.
4. (a) Attempt any one :
(i) Find the inverse Z-transform of $\frac{9 z^{3}}{(3 z-1)^{2}(z-2)}$ by residue method.
(ii) Solve the following difference equation by Z-transform.

$$
\mathrm{y}_{\mathrm{k}+3}-3 \mathrm{y}_{\mathrm{k}+2}+3 \mathrm{y}_{\mathrm{k}+1}-\mathrm{y}_{\mathrm{k}}=\mathrm{U}(\mathrm{k}), \mathrm{y}_{0}=\mathrm{y}_{1}=\mathrm{y}_{2}=0
$$

where

$$
U(k)= \begin{cases}0 & \text { if } k<0 \\ 1 & \text { if } k \geq 0\end{cases}
$$

(b) Attempt any two :
(i) Prove that if $\mathrm{Z}[\{\mathrm{f}(\mathrm{k})\}]=\mathrm{F}(\mathrm{z})$, then $\mathrm{Z}\left[\left\{\mathrm{a}^{\mathrm{k}} \mathrm{f}(\mathrm{k})\right\}\right]=\mathrm{F}\left(\frac{\mathrm{z}}{\mathrm{a}}\right)$.
(ii) Find the Z-transform of $\sin 2 \mathrm{k}, \mathrm{k} \geq 0$.
(iii) Find the inverse Z-transform of $\frac{3 z}{(z-2)}$ when $|z|<2$.
(c) Answer very briefly:
(i) State initial value theorem.
(ii) What is the order of the difference equation $6 y_{k+2}-2 y_{k+1}+y_{k-1}=0$?
(iii) What is the Z-transform of $\mathrm{f}(\mathrm{k})=\frac{1}{3^{\mathrm{k}}},(-4 \leq \mathrm{k} \leq 5)$?
5. (a) Attempt any one :
(i) Prove that:

$$
\mathrm{H}_{\mathrm{n}}\left\{\frac{\mathrm{df}}{\mathrm{~d} x}\right\}=-\mathrm{s}\left[\frac{\mathrm{n}+1}{2 \mathrm{n}} \mathrm{H}_{\mathrm{n}-1}\{\mathrm{f}(x)\}-\frac{\mathrm{n}-1}{2 \mathrm{n}} \mathrm{H}_{\mathrm{n}+1}\{\mathrm{f}(x)\}\right]
$$

(ii) Show that:

$$
\int_{0}^{\mathrm{a}} x^{3} \mathrm{~J}_{0}(\mathrm{~s} x) \mathrm{d} x=\frac{\mathrm{a}^{2}}{\mathrm{~s}^{2}}\left[2 \mathrm{~J}_{0}(\mathrm{as})+\left(\mathrm{as}-\frac{4}{\mathrm{as}}\right) \mathrm{J}_{1}(\mathrm{as})\right]
$$

(b) Attempt any two :
(i) Show that $\mathrm{H}\{\mathrm{f}(\mathrm{a} x)\}=\mathrm{a}^{-2} \mathrm{H}\left(\frac{\mathrm{s}}{\mathrm{a}}\right)$.
(ii) Find the Hankel transform of $\frac{\mathrm{e}^{-\mathrm{ax}}}{x}, \mathrm{n}=1$
(iii) Find $\mathrm{H}\left(x^{\mathrm{n}}\right), \mathrm{n}>-1$ and $x \mathrm{~J}_{\mathrm{n}}\left(\mathrm{s}_{\mathrm{i}} x\right)$ is the kernel of the transform.
(c) Answer very briefly:
(i) What is the value of the integral $\int_{0}^{\infty} \frac{\mathrm{e}^{-\mathrm{a} x}}{x} \mathrm{~J}_{1}(\mathrm{~s} x) \mathrm{d} x$?
(ii) What is the value of the integral $\int_{0}^{\infty} x \mathrm{e}^{-\mathrm{ax}} \mathrm{J}_{0}(\mathrm{~s} x) \mathrm{d} x$?
(iii) Find $\mathrm{H}^{-1}\left[\mathrm{e}^{-\mathrm{as}}\right]$, when $\mathrm{n}=0$.

