Seat No. : \qquad

AE-102

April-2016

B.Sc., Sem.-VI
 CC-310 : Mathematics
 (Graph Theory)

Time : 3 Hours]
[Max. Marks : 70

Instructions: (1) All questions are compulsory.
(2) Figures to the right indicate full marks of the question/sub-question.
(3) Notations used in this question paper carry their usual meaning.

1. (a) If G is any graph with e edges and n vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{\mathrm{n}}$ then prove that
$\sum_{i=1}^{n} \mathrm{~d}\left(v_{\mathrm{i}}\right)=2 \mathrm{e}$

OR

Define isomorphism of graphs. Show that the following graphs are isomorphic.

(b) Given any two vertices $u, v \in V(G)$, prove that every $u-v$ walk contains $a u-v$ path.

OR

Find radius and diameter of the graph G

2. (a) Draw all the trees (non-isomorphic) with number of vertices less than or equal to 5 .

OR

Prove that a non-empty graph G is bipartite if G has no odd cycles.
(b) Let u and v be any two distinct vertices of a tree T then prove that there is precisely one path from u to v.

If T is a tree with n vertices then prove that it has precisely $\mathrm{n}-1$ edges.
3. (a) If G is a forest (acyclic graph) with n vertices and k connected components then prove that it has $\mathrm{n}-\mathrm{k}$ edges.

OR

If G is a connected graph then prove that it has a spanning tree.
(b) Apply the Dijkstra's algorithm on the following connected weighted graph to find the length of shortest paths from the vertex A to each of the other vertices of following graph.

OR
Let G be a graph with n vertices $n \geq 2$ then prove that G has atleast two vertices which are not cut vertices.
4. (a) Write a short note on Konigsberg seven bridges problem.

OR

A connected graph G is Euler if and only if the degree of every vertex is even.
(b) If G is simple graph with n vertices, where $\mathrm{n} \geq 3$, and the degree $\mathrm{d}(v) \geq \frac{\mathrm{n}}{2}$ for every vertex v of G , then prove that G is Hamiltonian.

OR

Apply Prim's algorithm to find the minimal spanning tree on the graph :

5. Answer the following questions in short : (any seven)

1. Define cycle and give an example.
2. Define k-regular graph and give an example.
3. Define trail with an example.
4. Find subgraph $G-\{B, E\}$ for the graph G given in question $4-(b)$.
5. Define Hamiltonian graph.
6. Find induced subgraph of G given in question $4-(b)$, induced by $U=\{A, G, D\}$.
7. If connected graph G has 17 edges, what is the maximum possible number of vertices in G ?
8. Is the graph G with adjacency matrix $A=\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]$ connected? Why ?
9. Define a complete graph with any one example of a complete graph.
