Seat No. :

AD-108

April-2016

B.Sc., Sem.-VI **CC-309 : Mathematics** (Analysis – III)

Time : 3 Hours]

Instructions : (1)All questions are compulsory.

- (2)Write the question number in your answer sheet as shown in the question paper.
- (3)Figures to the right indicate marks of the question.

1. Prove : In any metric space X, each open sphere is an open set. (a)

OR

Prove that every Cauchy sequence is bounded.

(b) If $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$ and if the mapping $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ is defined by $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ then prove that d is a metric for R. 7

OR

Prove : B dry A is closed set, for G subset A of a metric space X.

2. Prove that the continuous image of a compact metric space is compact. (a)

OR

1

Let F be a bounded and closed set in R. Then prove that every open covering of F has a finite sub covering.

AD-108

7

[Max. Marks: 70

7

(b) Prove that the set A = (0, 2) has no separation.

OR

Prove that the function $f: (0, 1) \rightarrow R$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous.

3. (a) Let (f_n) be a sequence of continuous function on [a, b] and suppose that $f_n \to f$ uniformly on [a, b] then prove $\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x) dx.$ 7

OR

Suppose that $\lim_{n\to\infty} f_n(x) = f(x)$ for $x \in E$ and let $M_n = \sup_{x\in E} |f_n(x) - f(x)|$. Then prove that $f_n \to f$ uniformly on E if and only if $\lim_{n\to\infty} M_n = 0$.

(b) Let
$$f_n(x) = |x|^{1+\frac{1}{n}}$$
 for $x \in [-1, 1]$ then show that

- (i) $f_n \in D[-1, 1]$
- (ii) $f_n(x) \rightarrow f(x) = |x|$ uniformly on [-1, 1]
- (iii) f is not differentiable.

OR

Show that the sequence (f_n) ; where $f_n(x) = \frac{x}{1 + n^2 x^2} \quad \forall x \in [-1, 1]$ converges uniformly and the limit function is differentiable; but the relation $f'(x) = \lim_{n \to \infty} f_n(x)$ does not hold good for all $|x| \le 1$.

7

4. (a) If $f(x) = \sum a_n x^n$ be power series with radius of convergence 1, if the series converges at 1, then prove that $\lim_{x \to 1} f(x) = f(1)$. 7

OR

Prove that (i)
$$\sum_{k=0}^{n} {n \choose k} x^{k} (1-x)^{n-k} = 1$$
 and

(ii)
$$\sum_{k=0}^{n} (nx-k)^2 {n \choose k} x^k (1-x)^{n-k} = nx (1-x) \le \frac{n}{4}$$

For every $x \in \mathbf{R}$ and $\mathbf{n} \ge 0$.

(b) For
$$-1 \le x \le 1$$
 prove that $(\tan^{-1}x)^2 = 2\left\lfloor \frac{x^2}{2} - \left(1 + \frac{1}{3}\right)\frac{x^4}{4} + \left(1 + \frac{1}{3} + \frac{1}{5}\right)\frac{x^6}{6} - \cdots \right\rfloor$ and
 $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

OR

Show that the function $f(x) = \begin{cases} e^{1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$ has derivatives of all orders at all $x \neq 0$ but does not have a Taylor's theorem.

- 5. Give the answer in brief : (any seven)
 - (1) Define interior point in metric space.
 - (2) Find the limit points of the set of all rational numbers, Q and the set of real numbers R.
 - (3) Show that (0, 1) is not compact.
 - (4) Say true or false : If the series Σa_k converges absolutely then the series $\Sigma a_k \cos kx$ is not uniformly convergent on R.

3

14

7

- (5) Define connected metric space.
- (6) State Intermediate value theorem.
- (7) State Taylor's theorem.
- (8) Define uniform convergence.
- (9) If R is the radius of convergent of the series $\sum na_n x^{n-1}$ then what is the radius of convergent of the series $\sum n(n-1)a_n x^{n-2}$?