Seat No. : _____

AC-140

April-2016

F.Y., MBA Integrated

Basic Mathematics

Time : 3 Hours]

[Max. Marks: 100

Instruction : Non-programmable Scientific Calculator can be used

1. Attempt any **four** :

- (1) Define function. Explain any two functions with graph.
- (2) Find fog and gof if

$$f(x) = x^2 + 2$$
 and $g(x) = 1 - \frac{1}{1 - x}$

- (3) If $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 3x + 2$, find f(f(x)).
- (4) Classify the following function as Injection, Surjection or Bijection. $f: Q - \{3\} \rightarrow Q$ defined by $f(x) = \frac{2x+3}{x-3}$.

(5) Find the domain and range of
$$f(x) = \sqrt{4 - x^2}$$
.

- 2. Attempt any **four** :
 - (1) Evaluate $\lim_{x \to 4} \frac{x^2 16}{\sqrt{x^2 + 9} 5}$.
 - (2) Show that function f(x) as defined below is dis-continuous at x = 1/2.
 - (3) Discuss the continuity of the function f(x) at x = 2.

$$\mathbf{f}(x) = \begin{cases} 2-x, \ x < 2\\ 2+x, \ x \ge 2 \end{cases}$$

(4) Show that
$$\lim_{x \to 2} \left[\frac{1}{x-2} - \frac{1}{x^2 - 3x + 2} \right] = 1.$$

(5) Evaluate $\lim_{x \to 0} \frac{\sqrt{2 + x} - \sqrt{2}}{x}.$

AC-140

20

20

3. Attempt any **four** :

- (1) Let $y = (3x^2 + 1)(x^3 + 2x)$, find $\frac{dy}{dx}$.
- (2) Differentiate the function with respect to x

$$f(x) = \frac{e^x + \sin x}{1 + \log x} \, \cdot$$

(3) If $y = (x^2 + x + 1)^4$, find $\frac{dy}{dx}$.

(4) If
$$y = \frac{\sqrt{1-x}}{1+x}$$
 prove that $(1-x^2)\frac{dy}{dx} + dy = 0$.

(5) Differentiate the function with respect to x

$$f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}.$$

4. Attempt any **two** :

(1) If
$$y = x^x$$
 prove that $\frac{d^2y}{dx^2} - \frac{1}{y}\left(\frac{dy}{dx}\right)^2 - \frac{y}{x} = 0$

(2) If
$$e^{y}(x+1) = 1$$
 show that $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$

(3) A monopolist has a demand function x = 5 - 2P

Find : (i) Total revenue

- (ii) Average revenue
- (iii) Marginal revenue
- 5. Attempt any **two** :

(1)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix}$$
 show that $A^3 - 6A^2 + 5A + 1113 = 0$. Hence, find A^{-1} .

- (2) Find out the inverse of the following operation by Gauss elimination method :
 - x 2y + 3z = 42x + y 3z = 5-x + y + 2z = 3
- (3) The sum of three number is 6. If we multiply the third numbers 2 and add the first number to the result, we get 7. By adding second & third numbers to three times the first number we get 12. Use determinants to find the number.

20

20