Seat No. : \qquad

AC-140

April-2016

F.Y., MBA Integrated

Basic Mathematics

Time : 3 Hours]

[Max. Marks : 100
Instruction : Non-programmable Scientific Calculator can be used

1. Attempt any four :
(1) Define function. Explain any two functions with graph.
(2) Find fog and gof if

$$
\mathrm{f}(x)=x^{2}+2 \text { and } \mathrm{g}(x)=1-\frac{1}{1-x} .
$$

(3) If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is defined by $\mathrm{f}(x)=x^{2}-3 x+2$, find $\mathrm{f}(\mathrm{f}(x))$.
(4) Classify the following function as Injection, Surjection or Bijection.

$$
\mathrm{f}: \mathrm{Q}-\{3\} \rightarrow \mathrm{Q} \text { defined by } \mathrm{f}(x)=\frac{2 x+3}{x-3}
$$

(5) Find the domain and range of $\mathrm{f}(x)=\sqrt{4-x^{2}}$.
2. Attempt any four :
(1) Evaluate $\lim _{x \rightarrow 4} \frac{x^{2}-16}{\sqrt{\left(x^{2}+9\right)-5}}$.
(2) Show that function $\mathrm{f}(x)$ as defined below is dis-continuous at $x=1 / 2$.
(3) Discuss the continuity of the function $\mathrm{f}(x)$ at $x=2$.

$$
\mathrm{f}(x)= \begin{cases}2-x, & x<2 \\ 2+x, & x \geq 2\end{cases}
$$

(4) Show that $\lim _{x \rightarrow 2}\left[\frac{1}{x-2}-\frac{1}{x^{2}-3 x+2}\right]=1$.
(5) Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$.
3. Attempt any four :
(1) Let $y=\left(3 x^{2}+1\right)\left(x^{3}+2 x\right)$, find $\frac{\mathrm{dy}}{\mathrm{d} x}$.
(2) Differentiate the function with respect to x

$$
\mathrm{f}(x)=\frac{\mathrm{e}^{x}+\sin x}{1+\log x}
$$

(3) If $y=\left(x^{2}+x+1\right)^{4}$, find $\frac{\mathrm{dy}}{\mathrm{d} x}$.
(4) If $\mathrm{y}=\frac{\sqrt{1-x}}{1+x}$ prove that $\left(1-x^{2}\right) \frac{\mathrm{dy}}{\mathrm{d} x}+\mathrm{dy}=0$.
(5) Differentiate the function with respect to x

$$
\mathrm{f}(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{\mathrm{e}^{x}-\mathrm{e}^{-x}}
$$

4. Attempt any two :
(1) If $y=x^{x}$ prove that $\frac{d^{2} y}{d x^{2}}-\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}-\frac{y}{x}=0$.
(2) If $\mathrm{e}^{\mathrm{y}}(x+1)=1$ show that $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}=\left(\frac{\mathrm{dy}}{\mathrm{d} x}\right)^{2}$.
(3) A monopolist has a demand function $x=5-2 \mathrm{P}$

Find: (i) Total revenue
(ii) Average revenue
(iii) Marginal revenue
5. Attempt any two :
(1) $\mathrm{A}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right)$ show that $\mathrm{A}^{3}-6 \mathrm{~A}^{2}+5 \mathrm{~A}+1113=0$. Hence, find A^{-1}.
(2) Find out the inverse of the following operation by Gauss elimination method:

$$
\begin{array}{r}
x-2 y+3 z=4 \\
2 x+y-3 z=5 \\
-x+y+2 z=3
\end{array}
$$

(3) The sum of three number is 6 . If we multiply the third numbers 2 and add the first number to the result, we get 7 . By adding second \& third numbers to three times the first number we get 12 . Use determinants to find the number.

