Seat No. : \qquad

AC-122

April-2016
M.Sc., Sem.-IV

508 : Mathematics
(Fourier Analysis)
Time : 3 Hours]
[Max. Marks : 70

1. (A) Attempt any one.
(1) State and prove the uniqueness theorem for the real-valued continuous and L^{1} functions.
(2) If $\mathrm{f} \in \mathrm{L}^{\infty}$ then show that

$$
\lim _{\mathrm{p} \rightarrow \infty}\|\mathrm{f}\|_{\mathrm{p}}=\|\mathrm{f}\|_{L^{\infty}}
$$

(B) Attempt any two.
(1) Does there exist a non-constant function $f \in L^{1}$ such that $\hat{f}(m n)=m \hat{f}(n)$ for all non-zero integers m and n ?

(3) If $f \in L^{1}$, then show that

$$
\hat{\mathrm{f}}(\mathrm{n})=\overline{\hat{\mathrm{f}}(-\mathrm{n})}
$$

(C) Answer in brief.
(1) If $\mathrm{f}(x)=3 \mathrm{e}^{\mathrm{i} 2 x}-2 \mathrm{ie}^{-\mathrm{i} x}+5$ and $\mathrm{g}(x)=\mathrm{f}(x-2)$, then what is $\hat{\mathrm{g}}(2)$?
(2) Show that the Fourier transform map $\mathrm{T}: \mathrm{L}^{1} \rightarrow l_{\infty}(\mathrm{Z})$ is continuous.
(3) Give an example of an unbounded function f in L^{∞}.
2. (A) Attempt any one.
(1) Let $\left\{\mathrm{K}_{\mathrm{n}}\right\}$ be an approximate identity and $1 \leq \mathrm{p}<\infty$. Then show that

$$
\lim _{\mathrm{n} \rightarrow \infty}\left\|\mathrm{~K}_{\mathrm{n}} * \mathrm{f}-\mathrm{f}\right\|_{\mathrm{p}}=0, \forall \mathrm{f} \in \mathrm{~L}^{\mathrm{p}}
$$

(2) If γ is a non-trivial complex continuous algebra homomorphisms between L^{1} and the space of complex numbers C, then show that there exists a unique positive integer N such that $\gamma(\mathrm{f})=\hat{\mathrm{f}}(\mathrm{N})$, for every $\mathrm{f} \in \mathrm{L}^{1}$.
(B) Attempt any two.
(1) Prove that

$$
\mathrm{T}_{\mathrm{a}}(\mathrm{f} * \mathrm{~g})=\mathrm{T}_{\mathrm{a}} \mathrm{f} * \mathrm{~g}=\mathrm{f} * \mathrm{~T}_{\mathrm{a}} \mathrm{~g}
$$

(2) Does there exist two distinct elements in L^{1} which are idempotent but whose sum is not an idempotent element ? Justify your answer.
(3) Does there exist $f, g \in L^{1}$ which are not trigonometric polynomials but for which $\mathrm{f} * \mathrm{~g} \equiv 0$? Justify your answer.
(C) Answer in brief
(1) Show that convolution is commutative.
(2) If $\mathrm{f}(x)=3 \mathrm{e}^{\mathrm{i} 2 x}$, then what is $\mathrm{f} * \mathrm{f} * \mathrm{f}$?
(3) True or False : L^{1} has zero divisors with respect to convolution.
3. (A) Attempt any one.
(1) If $f \in L^{1}$, then prove that

$$
\int_{a}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d} x=\hat{\mathrm{f}}(0)(\mathrm{b}-\mathrm{a})+\sum_{\mathrm{n} \neq 0} \hat{\mathrm{f}}(\mathrm{n}) \frac{\mathrm{e}^{\mathrm{inb}}-\mathrm{e}^{\mathrm{ina}}}{\text { in }}
$$

(2) Define Fejer kernel $\mathrm{F}_{\mathrm{N}}(x)$ and show that the sequence $\left\{\mathrm{F}_{\mathrm{N}}\right\}$ is an approximate identity for convolution in L^{1}.
(B) Attempt any two.
(1) State (only) Fejer's theorem.
(2) Suppose $f, g \in L^{1}$ and Fourier series of g converges a.e. essentially boundedly. Then show that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{f}(x) \mathrm{g}(x)=\sum_{\mathrm{n} \in \mathrm{Z}} \hat{\mathrm{f}}(\mathrm{n}) \hat{\mathrm{g}}(-\mathrm{n})
$$

(3) If $\mathrm{f} \in \mathrm{L}^{1}$ is such that $\hat{f}(\mathrm{n})=0$ for all n , then show that $\sigma_{\mathrm{N}} \mathrm{f}(x)=0$ for all N and all x.
(C) Answer in brief.
(1) Show that $\mathrm{S}_{\mathrm{N}} \mathrm{f}=\mathrm{f} * \mathrm{D}_{\mathrm{N}}$ where $\mathrm{S}_{\mathrm{N}} \mathrm{f}(x)=\sum_{\mathrm{n}=-\mathrm{N}}^{\mathrm{N}} \hat{\mathrm{f}}(\mathrm{n}) \mathrm{e}^{\mathrm{in} x}$.
(2) For the series $\sum \mathrm{c}_{\mathrm{n}}$, state (only) any one condition under which cesaro summability implies summability.
(3) True or False: If $a_{n}=\int_{-\pi}^{\pi} D_{n}(x) d x$ and $b_{n}=\frac{a_{n+1}}{n}$, then $\left(b_{n}\right)$ is a bounded sequence.
4. (A) Attempt any one.
(1) If $\mathrm{a}_{\mathrm{n}} \downarrow 0$ and $\sum \mathrm{a}_{\mathrm{n}} \sin \mathrm{n} x$ converges uniformly then show that $n \mathrm{n}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.
(2) If $\left(a_{n}\right)$ is quasi-convex and bounded, then show that the sequence $\left(n \Delta a_{n}\right)$ is bounded. Also show that if $\left(a_{n}\right)$ is quasi-convex and convergent then the sequence $\left(n \Delta a_{n}\right)$ is convergent.
(B) Attempt any two.
(1) The sine series $\sum_{N=2}^{\infty} \frac{\sin n x}{\log n}$ converges everywhere but it is not a Fourier series. Explain this.
(2) If $a_{n} \rightarrow 0$ and $\sum\left|\Delta a_{n}\right|<\infty$, then show that the cosine series $\sum a_{n} \cos n x$ converges uniformly in $[-\pi, \pi]-[-\delta, \delta]$.
(3) Prove of disprove: If $\mathrm{f}(x)=\sum_{\mathrm{n}=1}^{\infty} \frac{\sin \mathrm{n} x}{\mathrm{n}}$, then f is continuous.
(C) Answer in brief.
(1) $I a_{n}=\frac{1}{\log n}$ convex ?
(2) True or False : The Fourier transform map $\mathrm{T}: \mathrm{L}^{1} \rightarrow \mathrm{C}_{0}(\mathrm{Z})$ is onto.
(3) True or False: If $a_{n} \downarrow 0$, then $\sum a_{n} \cos n x$ converges everywhere.
5. (A) Attempt any one.
(1) State the Uniform Boundedness theorem and using it show that there exists a function which is continuous at 0 but whose Fourier series diverges at 0 .
(2) If $1 \leq \mathrm{p}<\infty$, then show that $\mathrm{L}^{\mathrm{p}} \subseteq \mathrm{L}^{1} * \mathrm{~L}^{\mathrm{p}}$.
(B) Attempt any two.
(1) If f is of bounded variation then show that $\{\mathrm{n} \hat{\mathrm{f}}(\mathrm{n})\}$ is a bounded sequence.
(2) If $\left(b_{n}\right)$ is a sequence of non-negative real numbers converging to 0 , then show that there exists a sequence $\left(a_{n}\right)$ of non-negative real numbers such that :
(i) $\quad \sum \mathrm{a}_{\mathrm{n}}=\infty$,
(ii) $\sum \mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}<\infty$ and
(iii) $\sum \frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{n}}<\infty$.
(3) If $\mathrm{f} \in \mathrm{L}^{1}$ then show that $\sum_{\mathrm{n} \neq 0} \frac{\hat{\mathrm{f}}(\mathrm{n}) \mathrm{e}^{\mathrm{in} x}}{\mathrm{n}}$ converges uniformly.
(C) Answer in brief.
(1) State (only) Dini's test for convergence of Fourier series.
(2) True or False: $\mathrm{L}^{2} * \mathrm{~L}^{2}=\mathrm{L}^{2}$.
(3) True or False: If $\mathrm{f} \in \mathrm{L}^{1}$ is continuous and of bounded variation everywhere then the Fourier series of f converges uniformly.

