Seat No. :
AC-122
April-2016
M.Sc., SemIV
508 : Mathematics (Fourier Analysis)
[Max. Marks : 70
npt any one . (7)
State and prove the uniqueness theorem for the real-valued continuous and
L^1 functions.
If $f\in L^\infty$ then show that $\lim_{p\to\infty}\ f\ _p=\ f\ _{L^\infty}.$
npt any two . (4)
Does there exist a non-constant function $f \in L^1$ such that $\mathring{f}(mn) = m\mathring{f}(n)$ for
all non-zero integers m and n?
If f is absolutely continuous, then show that $Df(n) = \inf(n)$.
If $f \in L^1$, then show that
$\frac{\Delta}{f}(n) = \overline{f(-n)}$.
er in brief. (3)
If $f(x) = 3e^{i2x} - 2ie^{-ix} + 5$ and $g(x) = f(x - 2)$, then what is $g(2)$? Show that the Fourier transform map $T: L^1 \to l_\infty(Z)$ is continuous.
Give an example of an unbounded function f in L^{∞} .
apt any one . (7)
Let $\{K_n\}$ be an approximate identity and $1 \le p < \infty$. Then show that
$\lim_{n\to\infty}\left\ K_{n}*f-f\right\ _{p}=0,\ \forall f\in L^{p}.$
If γ is a non-trivial complex continuous algebra homomorphisms between

 L^1 and the space of complex numbers C, then show that there exists a

unique positive integer N such that $\gamma(f) = \hat{f}(N)$, for every $f \in L^1$.

Time: 3 Hours

(A) Attempt any **one**.

(B) Attempt any **two**.

(1)

(2)

(1)

(2)

(3)

(1) (2)

(3)

(1)

(2)

2.

(C) Answer in brief.

(A) Attempt any one.

1.

(B) Attempt any two.

(4)

(1) Prove that

$$T_a(f * g) = T_a f * g = f * T_a g.$$

- (2) Does there exist two distinct elements in L^1 which are idempotent but whose sum is not an idempotent element? Justify your answer.
- (3) Does there exist f, $g \in L^1$ which are not trigonometric polynomials but for which f * g = 0? Justify your answer.
- (C) Answer in brief (3)
 - (1) Show that convolution is commutative.
 - (2) If $f(x) = 3e^{i2x}$, then what is f * f * f?
 - (3) True or False: L^1 has zero divisors with respect to convolution.
- 3. (A) Attempt any **one**.

(7)

(4)

(1) If $f \in L^1$, then prove that

$$\int_{a}^{b} f(x) dx = \hat{f}(0) (b - a) + \sum_{n \neq 0} \hat{f}(n) \frac{e^{inb} - e^{ina}}{in}$$

- (2) Define Fejer kernel $F_N(x)$ and show that the sequence $\{F_N\}$ is an approximate identity for convolution in L^1 .
- (B) Attempt any **two**.
 - (1) State (only) Fejer's theorem.
 - (2) Suppose f, $g \in L^1$ and Fourier series of g converges a.e. essentially boundedly. Then show that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) g(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n) \hat{g}(-n).$$

(3) If $f \in L^1$ is such that $\hat{f}(n) = 0$ for all n, then show that $\sigma_N f(x) = 0$ for all N and all x.

- (C) Answer in brief. (3)
 - (1) Show that $S_N f = f * D_N$ where $S_N f(x) = \sum_{n=-N}^{N} f(n) e^{inx}$.
 - (2) For the series $\sum c_n$, state (only) any one condition under which cesaro summability implies summability.
 - (3) True or False: If $a_n = \int_{-\pi}^{\pi} D_n(x) dx$ and $b_n = \frac{a_{n+1}}{n}$, then (b_n) is a bounded sequence.
- 4. (A) Attempt any **one**.
 - (1) If $a_n \downarrow 0$ and $\sum a_n \sin nx$ converges uniformly then show that $na_n \to 0$ as $n \to \infty$.

(7)

- (2) If (a_n) is quasi-convex and bounded, then show that the sequence $(n\Delta a_n)$ is bounded. Also show that if (a_n) is quasi-convex and convergent then the sequence $(n\Delta a_n)$ is convergent.
- (B) Attempt any **two**. (4)
 - (1) The sine series $\sum_{N=2}^{\infty} \frac{\sin nx}{\log n}$ converges everywhere but it is not a Fourier series. Explain this.
 - (2) If $a_n \to 0$ and $\sum |\Delta a_n| < \infty$, then show that the cosine series $\sum a_n \cos nx$ converges uniformly in $[-\pi, \pi] [-\delta, \delta]$.
 - (3) Prove of disprove: If $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$, then f is continuous.
- (C) Answer in brief. (3)
 - (1) Is $a_n = \frac{1}{\log n}$ convex?
 - (2) True or False: The Fourier transform map $T: L^1 \to C_0(Z)$ is onto.
 - (3) True or False: If $a_n \downarrow 0$, then $\sum a_n \cos nx$ converges everywhere.

- 5. (A) Attempt any **one**.
 - (1) State the Uniform Boundedness theorem and using it show that there exists a function which is continuous at 0 but whose Fourier series diverges at 0.
 - (2) If $1 \le p < \infty$, then show that $L^p \subseteq L^1 * L^p$.
 - (B) Attempt any two.

(4)

(7)

- (1) If f is of bounded variation then show that $\{nf(n)\}\$ is a bounded sequence.
- (2) If (b_n) is a sequence of non-negative real numbers converging to 0, then show that there exists a sequence (a_n) of non-negative real numbers such that:
 - (i) $\sum a_n = \infty$,
 - (ii) $\sum a_n b_n < \infty$ and
 - (iii) $\sum \frac{a_n}{n} < \infty$.
- (3) If $f \in L^l$ then show that $\sum_{n \neq 0} \frac{{}^{\smallfrown} f(n) e^{inx}}{n}$ converges uniformly.
- (C) Answer in brief.

(3)

- (1) State (only) Dini's test for convergence of Fourier series.
- (2) True or False: $L^2 * L^2 = L^2$.
- (3) True or False: If $f \in L^1$ is continuous and of bounded variation everywhere then the Fourier series of f converges uniformly.

AC-122 4