Seat No. :

AC-106

April-2016

B.Sc., Sem.-VI

CC-308 : Statistics (Statistical Inference and Design of Experiment-II)

Time : 3 Hours]

[Max. Marks : 70

Instructions : (1) All questions carry equal marks.

- Scientific calculator is allowed. (2)
- (3) Statistical table will be provided on request.
- 1. (a) Explain :
 - (i) Procedure of testing of hypothesis.
 - (ii) Null and Alternative hypothesis.
 - (iii) Critical Region.

OR

Explain two types of errors, level of significance power of a test & UMP test.

State and prove Neyman-Pearson Lemma. (b)

OR

Let P be the Prob. that a win will fall head in a single toss in order to test $H_0: P = \frac{1}{2}$ against $H_1: P = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the prob. of type-I error and power of the test.

2. Explain likchihood ratio test. (a)

OR

Explain how will you test the significance of single mean μ for normal population. If.

 $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$ and σ^2 is known.

(b) Let X_1, X_2, \dots, X_{n1} be a r.s. from N (μ, σ^2), then explain the procedure to test $H_0 \cdot \sigma^2 \le \sigma_0^2$ vs $H_1 : \sigma^2 > \sigma_0^2$

OR

Let X_1, X_2, \dots, X_{n_1} be a r.s. of size n_1 from N (μ_1, σ^2) & y_1y_2 y_{n_2} be a r.s. from N (μ_2 , σ^2), then explain the procedure to test H₀, $\mu_1 = \mu_2$ vs H₁: $\mu_{1\neq} \mu_2$. P.T.O. 3. (a) What is non-parametric test ? Give difference between parametric and non-parametric test.

OR

Write a short note on sign test.

(b) Explain Mann-Whitney U-test.

OR

Explain Median test.

4. (a) Give complete layout and ANOVA table for RBD.

OR

What is LSD ? Explain and give complete layout and analysis of variance for LSD.

- (b) Explain :
 - (i) Factorial design.
 - (ii) 2^2 factorial experiment.

OR

What is confounding ? Explain in detail Complete confounding and Partial confounding.

- 5. (1) What is the critical value (at 5% level of significance) for $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$.
 - (2) If n = 36, \overline{X} = 24.6, S = 12, H₀ : $\mu \le 20$, vs H₁ : $\mu > 20$. What is the value of test statistics ?
 - (3) Define simple and composite hypothesis.
 - (4) Define likelihood function.
 - (5) Name the test statistics for post HOC analysis.
 - (6) Complete the following ANOVA table :

Source	SS	d.f.	MSS	F
Between Treatment	2073.6	4	_	_
Between Blocks	6000	5	1200	_
Error		20	288	
Total		29	_	

(7) Define BLUE.