$\qquad$

# AK-123 

April-2016
M.Sc., Sem.-IV (CA \& IT)

Computer Oriented Numerical Methods
Time: 3 Hours]
[Max. Marks : 100

Instruction : Non-programable scientific calculator can be used.

1. Attempt any two :
(1) Solve the system of equations by Gauss elimination method with partial pivoting.

$$
\begin{array}{r}
x+y+z=7 \\
3 x+3 y+4 z=24 \\
2 x+y+3 z=16
\end{array}
$$

(2) Solve the system of equations by Gauss Jordon method.

$$
\begin{array}{r}
x+y+z=9 \\
2 x-3 y+4 z=13 \\
3 x+4 y+5 z=40
\end{array}
$$

(3) Solve the system of equations by Gauss Seidal method.

$$
\begin{gathered}
10 x+y+z=12 \\
2 x+10 y+z=13 \\
2 x+2 y+10 z=14
\end{gathered}
$$

2. Attempt any two :
(1) Fit a second degree parabola to the following data :

| $x$ | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 1.1 | 1.3 | 1.6 | 2.0 | 2.7 | 3.4 | 4.1 |

(2) Predict y at $x=3.75$ by fitting a power curve $\mathrm{y}=\mathrm{a} x^{6}$ to the given data :

| $x:$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y}:$ | 2.98 | 4.26 | 5.21 | 6.10 | 6.80 | 7.50 |

AK-123
1
P.T.O.
(3) Attempt the following :
(a) Add .6925E5 to .9321 E 4
(b) Subtract $.8231 \mathrm{E}-3$ from $.9990 \mathrm{E}-3$
(c) Multiply .4142 E 2 by .1213 E 3
(d) Find the absolute and relative error of rounding to 3 decimal places of $.000634810^{-2}$.
(e) Find the absolute and relative error of function to 3 decimal places $.008459 \times 10^{3}$.
3. Attempt any two.
(1) Find a root that lies between 2 and 3 of the equation $x^{3}-4 x-9=0$, using the bisection method correct to three decimal places.
(2) The elevation above a datum line of seven points of a road are given below :

| $x:$ | 0 | 300 | 600 | 900 | 1200 | 1500 | 1800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y:$ | 135 | 149 | 157 | 183 | 201 | 205 | 193 |

Find the gradient of the road at the middle point.
(3) Give geometrical interpretation of False position method.
4. Attempt any two :
(1) Using Newton's divided difference formula evaluate $f(8)$ and $f(15)$.

| $x:$ | 4 | 5 | 7 | 10 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y:$ | 48 | 100 | 294 | 900 | 1210 | 2028 |

(2) Using appropriate formula of Interpolation find f(22).

| $x:$ | 20 | 25 | 30 | 35 | 40 | 45 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(x):$ | 354 | 332 | 291 | 260 | 231 | 204 |

(3) The following table gives the value of $x$ and $y$, find the value of $x$ corresponding to $\mathrm{y}=12$ using Lagrange's formula.

| $x:$ | 1.2 | 2.1 | 2.8 | 4.1 | 4.9 | 6.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y:$ | 4.2 | 6.8 | 9.8 | 13.4 | 15.5 | 19.6 |

AK-123
5. Attempt the following :
(A) Evaluate $\int_{0}^{2} \mathrm{e}^{-x^{2}} \mathrm{~d} x$ by using trapezoidal rule. (take $\mathrm{h}=0.20$ ).
(B) Obtain numerically the solution of $\frac{\mathrm{dy}}{\mathrm{d} x}=x^{2}+\mathrm{y}^{2}, \mathrm{y}(0)=0.5$

Using Euler's method to find y at $x=0.1, x=0.2$ and $x=0.3$.
OR
(A) Evaluate $\int_{0}^{9} \frac{\mathrm{~d} x}{1+x^{3}}$ by using Simpson's $\frac{3}{8}$ rule.
(B) Using Runge-Kutta $4^{\text {th }}$ order method, find the solution of the following differential equation $\frac{\mathrm{dy}}{\mathrm{d} x}=x+\mathrm{y}$
for $x=0.1,0.2$ and 0.3 . Given that $\mathrm{y}=0$ when $x=0$.

