\qquad
AK-122
April-2016
M.Sc., Sem-II (CA-IT) Integrated

Matrix Algebra \& Graph Theory

Time : 3 Hours]

[Max. Marks : 100

1. Do as directed: (any 10)
$2 \times 10=20$
(i) Define : Complete graph, Isomorphic graph.
(ii) Define : Bipartite graph, k-regular graph.
(iii) Are they isomorphic :

Justify your answer.
(iv) Draw a complete graph with 5 vertices.
(v) Is the following graph a complete bipartite graph?

Give reason
(vi) Give the matrix representation of the graph.

(vii) Draw the graph for the given adjacency matrix :

$$
\left(\begin{array}{lll}
1 & 3 & 0 \\
3 & 0 & 2 \\
0 & 2 & 0
\end{array}\right)
$$

(viii) Define Path, walk.
(ix) Find the square of the following graph:

(x) A tree has 3 vertices of degree 3 each, what is the number of leaves in the tree ?
(xi) Define : balanced tree of height h, Binary tree.
2. Answer any two :
$10 \times 2=20$
(a) Define:
(i) Cut vertex
(ii) Bridge
(iii) Strongly connected graph
(iv) Spanning tree
(v) Directed graph
(b) Using Krushkal's Algorithm, find the minimal spanning tree from the following graph :

(c) Find the shortest path from the node 0 to node 8 , from the data given below :

Arc $(\mathrm{i}-\mathrm{j})$	Distance
$0-1$	16
$0-2$	20
$0-3$	45
$1-3$	19
$2-4$	13
$2-5$	14
$3-5$	11
$3-7$	21
$4-5$	9
$5-6$	13
$5-7$	18
$6-7$	12
$6-8$	10
$7-8$	15

(Use Dijkstra's algorithm)
3. Answer any two :
(a) (i) State Caley-Hamilton theorem. For the matrix given below, verify the theorem :

$$
\left[\begin{array}{ccc}
11 & -4 & -7 \\
7 & -2 & -5 \\
10 & -4 & -6
\end{array}\right]
$$

(ii) Determine the Rank of the following matrix :

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 2 \\
2 & 6 & 5
\end{array}\right]
$$

(b) (i) Test the consistency of the following set of equations:

$$
\begin{array}{r}
4 x-2 y+6 z=8 \\
x+y-3 z=-1 \\
15 x-3 y+9 z=21
\end{array}
$$

(ii) Find the eigen values and eigen vectors of the matrix :

$$
\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

(c) (i) Given v_{1} and v_{2} in a vector space V , let $\mathrm{H}=\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Show that H is a subspace of V.
(ii) Define Linear Transformation. Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ is given by $\mathrm{T}(x, \mathrm{y}, \mathrm{z})=$ $(x+y, y+z)$. Is T a linear transformation?
4. Answer any four :
(i) Find the inverse of the following matrix :

$$
\left[\begin{array}{rrr}
1 & -2 & 2 \\
2 & -3 & 6 \\
1 & 1 & 7
\end{array}\right]
$$

(ii) Verify the theorem : $\operatorname{det} \mathrm{AB}=\operatorname{det} \mathrm{A}$ debt B , where A, B are $\mathrm{n} \times \mathrm{n}$ matrices, for the following matrices:

$$
A=\left[\begin{array}{rr}
3 & 6 \\
-1 & 2
\end{array}\right], B=\left[\begin{array}{rc}
4 & 2 \\
-1 & -1
\end{array}\right]
$$

Also verify if $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
(iii) Compute det A , where

$$
A=\left[\begin{array}{cccc}
2 & -8 & 6 & 8 \\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right]
$$

(iv) Prove that the complete graph K_{4} is plannar but K_{5} is not.
(v) Define: (A) Jordan Curve, (B) Crossing number of a graph, (C) Hamiltonian graph, (D) Konisberg bridge problem, (E) Plannar graph.
5. (a) Answer any five :
(i) How many matrices of order 2×3 can be formed, in which the digits from 0 to 9 occur not more than once?
(ii) How many numbers are there between 1000 and 10000 in which all the digits are distinct ?
(iii) A hotel has six single rooms, six double rooms and four rooms where in each three persons can stay. In how many ways can 30 persons be accommodated in this hotel ?
(iv) X knows Tamil, Malayalam and Marathi. Y knows only Bengali and Punjabi. Z knows all these languages. In how many different ways can Z get a message from X and pass it onto Y ?
(v) Out of 200 students, 50 take Discrete Mathematics, 140 take Economics, 24 take both. How many of them do not take either of these courses ?
(vi) State Pigeon Hole principle.
(b) If A is a 7×9 matrix with a two dimensional null space, what is the rank of A ?

Could 6×9 matrix have a two dimensional null space?

OR

The matrices given below are row equivalent :

$$
\begin{aligned}
A & =\left[\begin{array}{ccccc}
2 & -1 & 1 & -6 & 8 \\
1 & -2 & -4 & 3 & -2 \\
-7 & 8 & 10 & 3 & -10 \\
5 & -5 & -7 & 0 & 4
\end{array}\right] \\
B & =\left[\begin{array}{ccccc}
1 & -2 & -4 & 3 & -2 \\
0 & 3 & 9 & -12 & 12 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(i) Find rank A and dim Nul A.
(ii) Find bases for Col A and Row A .
(iii) What is the next step to perform to find a basis for Nul A ?
(iv) How many pivot columns are in a row echelon form of A^{T} ?

