Seat No. : \qquad

AS-102

May-2016

B.C.A., Sem.-II

CC-111 : Mathematical Foundation of Computer Science

Time : 3 Hours]

[Max. Marks : 70

1. (A) (1) Verify the properties, existence of identity and existence of inverse (for each of the elements of a set) for the following binary operations on a set of positive integers.
(i) $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-1$
(ii) $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{2}$
(2) Prove that every cyclic group is abelian.

OR

(A) (1) Show that a set $G=\{(a, b, c) / a, b, c \in R\}$ is a group with respect to the operation addition defined as follows :
For any $\alpha=\left(a_{1}, b_{1}, c_{1}\right), \beta=\left(a_{2}, b_{2}, c_{2}\right) \in G, \alpha+\beta=\left(a_{1}+a_{2}, b_{1}+b_{2}\right.$, $c_{1}+c_{2}$)
(2) Prove that identity element in a Group is unique.
(B) (1) Show that a set $\mathrm{G}=\left\{2^{\mathrm{n}} / \mathrm{n} \in \mathrm{Z}\right\}$ under multiplication is a cyclic group.
(2) Show that if G is an abelian Group, then for any $a, b \in G,(a b)^{2}=a^{2} b^{2}$.

OR

(1) Find the order of each element of a multiplicative group $G=\left\{a, a^{2}, a^{3}, a^{4}\right.$, $\left.a^{5}, a^{6}=e\right\}$.
(2) State Lagrange's Theorem. How many subgroups are there for the group of order 11 ?
2. (A) (1) Let a set $X=\{1,2,3,4\}$. The relation matrix $M(R)$ on a set X is given below:
$\mathrm{M}(\mathrm{R})=\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
Answer the following questions.
(i) Give Domain and Range of the relation.
(ii) Is this relation reflexive ?
(iii) Is this relation irreflexive?
(iv) Is this relation Symmetric?
(2) Define an equivalence relation and equivalence classes. Is the following relation an equivalence on the set $\mathrm{X}=\{1,2,3\}$.
$\mathrm{R}=\{(1,1),(1,2),(1,3),(2,2),(3,1)\}$
(1) Give relation matrix and relation graph of a relation on a set $\mathrm{X}=\{1,2,3,4\}$ defined by $R=\{\langle x, y\rangle / x, y \in X, x \leq y\}$.
(2) Show that a set $\langle\mathrm{P}(\mathrm{A}), \subseteq)$, where $\mathrm{A}=\{1,2,3\}$, with the relation inclusion is a Poset.
(B) (1) Draw the Hass diagram of the Poset $\left\langle\mathrm{S}_{210}, \mathrm{D}\right\rangle$.
(2) Find minimal and maximal elements for the Poset $\langle P, D\rangle$, where $P=\{2,3,6,12,18,36\}$, and D means "divides". Also find greatest lower bound of a subset $(6,12,18\}$ of P.

OR

(1) Define partition of a set. Determine whether or not the following sets are partition of the set Z of integers with justification.
$p_{1}=\{\{\mathrm{x} \in \mathrm{Z} / x<5\},\{x \in \mathrm{Z} / x>5\}\}$
$p_{2}=\{\{2 n / n \in Z\},\{2 n+1 / n \in Z\}\}$
(2) Define Chain. Give an example of a Poset which is not a chain.
3. (A) (1) Show that the operations of meet and join on a lattice are commutative and idempotent.
(2) Define a Sub-Boolean Algebra. Find any three sub-Boolean Algebra of the Boolean Algebra $\left\langle\mathrm{S}_{66}, \mathrm{D}\right\rangle$ where S_{m} is a set of divisors of m and D is a partial ordering relation divides.

OR

(1) Define Boolean Algebra. Prove that in a Boolean Algebra, $\mathrm{a} \leq \mathrm{b} \Leftrightarrow \mathrm{b}^{\prime} \leq \mathrm{a}^{\prime}$
(2) Define Complete lattice. Is a lattices $\left\langle S_{6}, D\right\rangle$, complete ? Justify your answer. (S_{m} is a set of divisors of m and D is a partial ordering relation divides)
(B) (1) If exists, find complement of each element of a lattice $\langle\mathrm{P}(\mathrm{A}), \cap, \cup\rangle$, where $\mathrm{A}=\{1,2,3\}$.
(2) In a Boolean Algebra prove that, $a=b \Rightarrow a b^{\prime}+a^{\prime} b=0$

OR
(1) By giving an example show that any subset of a lattice need not be a sublattice.
(2) Let $\langle\mathrm{L}, *, \oplus\rangle$ be a chain with $\mathrm{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. If $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$, show that L is a distributive lattice.
4. (A) (1) Are the following graphs Isomorphic? Justify your answer.

Figure - 1
(2) Give other representation of the Tree expressed by,

$$
\begin{gathered}
\left(\mathrm{V}_{0}\left(\mathrm{~V}_{1}\left(\mathrm{~V}_{2}\right)\left(\mathrm{V}_{3}\left(\mathrm{~V}_{4}\right)\right)\right)\left(\mathrm{V}_{5}\left(\mathrm{~V}_{6}\right)\left(\mathrm{V}_{7}\left(\mathrm{~V}_{8}\right)\left(\mathrm{V}_{9}\right)\right)\right)\left(\mathrm{V}_{10}\left(\mathrm{~V}_{11}\left(\mathrm{~V}_{12}\right)\right)\right)\right) \\
\text { OR }
\end{gathered}
$$

(A) (1) Are the simple graphs with the following adjacency matrices isomorphic ? Draw the graph of each adjacency matrices.
$M\left(G_{1}\right)=\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$ and $M\left(G_{2}\right)=\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
(2) Define binary tree. Give the binary tree representation for the following tree representation.

Figure - 2
(B) (1) Find the reachable set of vertices v_{1}, v_{5} and v_{10} form the following graph.

Figure - 3
(2) Define node base. Find the node base of the graph given in figure-3 above.

OR

(1) From the given graph G answer the following questions.
(i) Give a geodesic path from the vertex ' v_{5} ' to the vertex ' v_{1} '.
(ii) Find the distance between two vertices v_{1} and v_{5}.
(iii) Give the reachable set of a set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}\right\}$.

Figure - 4
(2) Give an adjacency matrix for the graph G given in the figure -4 above. Also draw the subgraph H with $V(H)=V(G)-\left\{v_{1}\right\}$.
(1) A cyclic group has only one generator. (True / False)
(2) The set N of all positive integers is a group with respect to operation \qquad .
(a) Addition
(b) Multiplication
(c) $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-2$
(d) None of these
(3) In the additive group of integers the order of every element is \qquad .
(a) Zero
(b) n
(c) infinite
(d) None of these
(4) Every subgroup of an abelian group is abelian. (True / False)
(5) There are \qquad distinct permutations on a set of n elements.
(a) n
(b) $\mathrm{n}+1$
(c) $\mathrm{n}-1$
(d) None of these
(6) A covering of a set is always a partition of that set. (True / False)
(7) A relation is symmetric if its matrix is \qquad -
(a) Symmetric
(b) Anti-symmetric
(c) Square
(d) None of these
(8) If the Domain and Range of a relation are same then relation is \qquad .
(a) Reflexive
(b) Symmetric
(c) Equivalence
(d) None of these
(9) A Poset P is a lattice if for any $\mathrm{a}, \mathrm{b} \in \mathrm{P}$, \qquad .
(a) $\mathrm{a} * \mathrm{~b} \in \mathrm{P}$
(b) $\mathrm{a} * \mathrm{~b}=0$
(c) $\quad(\mathrm{a} * \mathrm{~b})^{\prime}=\mathrm{a}^{\prime} \oplus \mathrm{b}^{\prime}$
(d) None of these
(10) Every Boolean Algebra is a lattice. (True / False)
(11) $\left\langle\mathrm{S}_{6}, \mathrm{D}\right\rangle$ is a sublattice of a lattice $\left\langle\mathrm{S}_{12}, \mathrm{D}\right\rangle$.
(a) $\left\langle\mathrm{S}_{12}, \mathrm{D}\right\rangle$
(b) $\left\langle\mathrm{S}_{30}, \mathrm{D}\right\rangle$
(c) $\left\langle\mathrm{S}_{45}, \mathrm{D}\right\rangle$
(d) None of these
(12) Every subset of a lattice is a sublattice. (True / False)
(13) Let a bounded lattice $\langle\mathrm{L}, *, \oplus, 0,1\rangle$. An element $\mathrm{b} \in \mathrm{L}$ is called a complement of an element $a \in L$ if \qquad .
(a) $\mathrm{a} * \mathrm{~b}=\mathrm{a}$ and $\mathrm{a} \oplus \mathrm{b}=\mathrm{b}$
(b) $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$ and $\mathrm{a} \oplus \mathrm{b}=\mathrm{b} \oplus \mathrm{a}$
(c) $\mathrm{a} * \mathrm{~b}=0$ and $\mathrm{a} \oplus \mathrm{b}=1$ (d) None of these
(14) In a Boolean Algebra $\left\langle\mathrm{B}, *, \oplus,^{‘}, 0,1\right\rangle$, for any $\mathrm{a}, \mathrm{b} \in \mathrm{B},(\mathrm{a} * \mathrm{~b})^{\prime}=$ \qquad .
(a) a^{\prime}
(b) 0
(c) 1
(d) None of these

