Seat No. : _____

AR-128

May-2016

M.Sc., Sem.-II

408 : Mathematics (Algebra – I)

Time : 3 Hours][Max			Marks: 70	
1. (a	a) A	ttempt any one .	7	
	(i	If $\varepsilon = \beta_1 \beta_2 \dots \beta_r$, where β 's are 2-cycles, prove that r is even.		
	(i) State and prove the Orbit-Stabilizer Theorem.		
(t	5) A	ttempt any two .	4	
	(i	Can a group have more subgroups than it has elements ? Justify.		
	(i) Show that for $n \ge 3$, $Z(S_n) = \{\epsilon\}$		
	(i	i) Let G be the group of non-zero complex numbers under multiplication and let $H = \{x \in G x = 1\}$. Give a geometric description of the cosets of H.		
(0	c) A	nswer very briefly.	3	
	(i	Show that group $(\mathbb{Z}, +)$ is not isomorphic to $(\mathbb{Q}, +)$		
	(i) Prove or disprove : The group $\mathbb{Z} \oplus \mathbb{Z}$ is cyclic.		
	(i	i) If $\alpha = (12)(134)(152)$ then α is even or odd ? Justify.		
2. (a	a) A	ttempt any one .	7	
	(i	Let G be a finite Abelian group and let p be a prime that divides the order of G, prove that G has an element of order p.		
	(i) Let G and H be finite cyclic groups, prove that $G \oplus H$ is cyclic iff $ G $ and		
		H are relatively prime.		
(t	5) A	ttempt any two .	4	
	(i	If $G = U(32)$ and $H = \{1,31\}$. Find the isomorphism class of the factor group G/H.		
	(i) In the group \mathbb{Z} , let H = < 5 > and K = <7>. Prove that \mathbb{Z} = HK. Does $Z = H \times K$? Justify.		
	(i	i) Determine the last two digits of 23^{23} .		
AR-128	8	1 P.T.	0.	

- (c) Answer very briefly.
 - (i) What is the largest order of any element in $\mathbb{Z}_{30} + \mathbb{Z}_{20}$? Explain.
 - (ii) If |G| = pq, where p and q are not necessarily distinct primes, show that |Z(G)| = 1 or pq.
 - (iii) What is the order of element 5+ <6> in the factor group \mathbb{Z}_{18} / <6> ?

3. (a) Attempt any **one**.

- (i) State and prove N/C theorem.
- (ii) State and prove the First Isomorphism Theorem.
- (b) Attempt any **two**.
 - (i) If ϕ is a homomorphism from Z₃₀ onto a group of order 5, determine the Kernel of ϕ .
 - (ii) Find all Abelian groups (up to isomorphism) of order 360.
 - (iii) Let G be a group. If $H = \{g^2/g \in G\}$ is a subgroup of G, prove that it is a normal subgroup of G.
- (c) Answer very briefly.
 - (i) Prove that a factor group of an Abelian group is Abelian.
 - (ii) Define normal subgroup. Show that S_n has a proper, nontrivial normal subgroup.
 - (iii) Show that group $G \oplus \overline{G}$ is isomorphic to $\overline{G} \oplus G$.

4. (a) Attempt any **one**.

- (i) State and prove Sylow's first theorem.
- (ii) State and prove Sylow's second theorem.
- (b) Attempt any **two**.
 - (i) Show that a noncyclic group of order 21 must have 14 elements of order 3.
 - (ii) How many Sylow 5-subgroups of S_5 are there ? Exhibit two.
 - (iii) If G has a unique Sylow p-subgroup H, show that H is normal in G.

- (i) Suppose |G| = 168. If G has more than one Sylow 7-subgroup, exactly how many does it have ? Explain.
- (ii) Let $a \in G$. Define the conjugacy class cl(a). Show that $cl(a) = \{a\}$ iff $a \in Z(G)$.
- (iii) Define the terms : (i) The normalizer N(H) (ii) The centralizer C(H).

AR-128

4

7

3

4

7

3

⁽c) Answer very briefly.

5. (a) Attempt any **one**.

- (i) Define simple group. Prove that A_5 is simple.
- (ii) State and prove Generalized Cayley Theorem.

(b) Attempt any **two**.

- (i) Does there exist a simple group of order 112 ? Justify.
- (ii) Show that A_5 cannot contain a subgroup of order 30, 20 or 15.
- (iii) How many non-equivalent ways are there to string three black and three white beads on a necklace of six beads under the dihedral group D_6 ? Explain briefly.
- (c) Answer very briefly.
 - (i) If $|G| = p^n$, where p is prime and $n \ge 2$, show that G cannot be simple.
 - (ii) Define (a) orbit (i) (b) fix (ϕ) .
 - (iii) State (without proof) : (i) Embedding theorem (ii) Burnside's theorem

AR-128

4

3

AR-128