\qquad

AR-128

May-2016
M.Sc., Sem.-II

408 : Mathematics
 (Algebra - I)

Time : 3 Hours]

[Max. Marks : 70

1. (a) Attempt any one.
(i) If $\varepsilon=\beta_{1} \beta_{2} \ldots \beta_{\mathrm{r}}$, where β 's are 2-cycles, prove that r is even.
(ii) State and prove the Orbit-Stabilizer Theorem.
(b) Attempt any two.
(i) Can a group have more subgroups than it has elements? Justify.
(ii) Show that for $\mathrm{n} \geq 3, \mathrm{Z}\left(\mathrm{S}_{\mathrm{n}}\right)=\{\varepsilon\}$
(iii) Let G be the group of non-zero complex numbers under multiplication and let $\mathrm{H}=\{x \in \mathrm{G} /|x|=1\}$. Give a geometric description of the cosets of H .
(c) Answer very briefly.
(i) Show that group $(\mathbb{Z},+)$ is not isomorphic to $(\mathbb{Q},+)$
(ii) Prove or disprove : The group $\mathbb{Z} \oplus \mathbb{Z}$ is cyclic.
(iii) If $\alpha=(12)(134)(152)$ then α is even or odd? Justify.
2. (a) Attempt any one.
(i) Let G be a finite Abelian group and let p be a prime that divides the order of G, prove that G has an element of order p.
(ii) Let G and H be finite cyclic groups, prove that $G \oplus H$ is cyclic iff $|G|$ and $|\mathrm{H}|$ are relatively prime.
(b) Attempt any two.
(i) If $G=U(32)$ and $H=\{1,31\}$. Find the isomorphism class of the factor group G / H.
(ii) In the group \mathbb{Z}, let $H=<5\rangle$ and $K=\langle 7\rangle$. Prove that $\mathbb{Z}=H K$. Does $Z=H \times K$? Justify.
(iii) Determine the last two digits of 23^{23}.
(c) Answer very briefly.
(i) What is the largest order of any element in $\mathbb{Z}_{30}+\mathbb{Z}_{20}$? Explain.
(ii) $\mathrm{If}|\mathrm{G}|=\mathrm{pq}$, where p and q are not necessarily distinct primes, show that $|Z(G)|=1$ or $p q$.
(iii) What is the order of element $5+<6>$ in the factor group $\mathbb{Z}_{18} /<6>$?
3. (a) Attempt any one.
(i) State and prove N/C theorem.
(ii) State and prove the First Isomorphism Theorem.
(b) Attempt any two.
(i) If ϕ is a homomorphism from Z_{30} onto a group of order 5, determine the Kernel of ϕ.
(ii) Find all Abelian groups (up to isomorphism) of order 360 .
(iii) Let G be a group. If $H=\left\{\mathrm{g}^{2} / \mathrm{g} \in \mathrm{G}\right\}$ is a subgroup of G , prove that it is a normal subgroup of G.
(c) Answer very briefly.
(i) Prove that a factor group of an Abelian group is Abelian.
(ii) Define normal subgroup. Show that S_{n} has a proper, nontrivial normal subgroup.
(iii) Show that group $\mathrm{G} \oplus \overline{\mathrm{G}}$ is isomorphic to $\overline{\mathrm{G}} \oplus \mathrm{G}$.
4. (a) Attempt any one.
(i) State and prove Sylow's first theorem.
(ii) State and prove Sylow's second theorem.
(b) Attempt any two.
(i) Show that a noncyclic group of order 21 must have 14 elements of order 3.
(ii) How many Sylow 5-subgroups of S_{5} are there ? Exhibit two.
(iii) If G has a unique Sylow p-subgroup H , show that H is normal in G .
(c) Answer very briefly.
(i) Suppose $|\mathrm{G}|=168$. If G has more than one Sylow 7-subgroup, exactly how many does it have? Explain.
(ii) Let $a \in G$. Define the conjugacy class $\operatorname{cl}(\mathrm{a})$. Show that $\operatorname{cl}(\mathrm{a})=\{\mathrm{a}\}$ iff $a \in Z(G)$.
(iii) Define the terms: (i) The normalizer $\mathrm{N}(\mathrm{H})$ (ii) The centralizer $\mathrm{C}(\mathrm{H})$.
5. (a) Attempt any one.
(i) Define simple group. Prove that A_{5} is simple.
(ii) State and prove Generalized Cayley Theorem.
(b) Attempt any two.
(i) Does there exist a simple group of order 112 ? Justify.
(ii) Show that A_{5} cannot contain a subgroup of order 30,20 or 15 .
(iii) How many non-equivalent ways are there to string three black and three white beads on a necklace of six beads under the dihedral group D_{6} ? Explain briefly.
(c) Answer very briefly.
(i) If $\mid \mathrm{GI}=\mathrm{p}^{\mathrm{n}}$, where p is prime and $\mathrm{n} \geq 2$, show that G cannot be simple.
(ii) Define (a) orbit (i) (b) fix (ϕ).
(iii) State (without proof) : (i) Embedding theorem (ii) Burnside's theorem
