\qquad NF-102
December-2015
B.Sc., Sem.-V

Elective-305 : Mathematics (Number Theory)

Time: 3 Hours]
[Max. Marks : 70
Instructions : (1) All the questions are compulsory.
(2) Notations are usual, everywhere.

1. (A) State and prove Division algorithm theorem.

OR

Prove that the linear Diophantine equation $a x+b y=c$ has a solution iff d / c, where $\mathrm{d}=$ g.c.d (a, b). Also prove that if x_{0}, y_{0} is a solution of this equation then all other solutions are given by
$x=x_{0}+\left(\frac{\mathrm{b}}{\mathrm{d}}\right) \mathrm{t} ; \mathrm{y}=\mathrm{y}_{0}-\left(\frac{\mathrm{a}}{\mathrm{d}}\right) \mathrm{t}$ where t is any integer.
(B) Attempt any two :
(1) Define g.c.d for two integer, using the Euclidean algorithm to obtain integer x and y such that it satisfying g.c.d $(2378,1769)=1769 x+2378 y$. Also find g.c.d. for 1769 and 2378.
(2) Find the all positive solutions in the integers for the Diophantine equation, $24 x+138 y=18$.
(3) If a and b are odd integers then prove that $16 \mid a^{4}+b^{4}-2$.
2. (A) Define "congruent modulo n relation for a fixed positive integer n". Also prove that it is an equivalence relation.

OR

Define prime number. Also if p is a prime and $\mathrm{p}|\mathrm{ab}|$ then prove that either $\mathrm{p}|\mathrm{a}|$ or plbl.
(B) Attempt any two :
(1) Using Chinese Remainder Theorem, solve :
$2 x \equiv 1(\bmod 3), 3 x \equiv 1(\bmod 5)$ and $5 x \equiv 1(\bmod 7)$.
(2) Assuming that 495 divides $273 \times 49 y^{5}$, obtain the digits x and y.
(3) Prove that 5 is a factor of $3^{3 n+1}+2^{n+1}$ for each positive n.
3. (A) State and prove Euler's theorem.

OR

State and prove Wilson's theorem.
(B) Attempt any two :
(1) In usual notation prove that $2^{20} \equiv 1(\bmod 41)$
(2) Find the remainder when the sum $1!+2!+3!+\ldots+100$! is divisible by 12 .
(3) Solve : $18 x \equiv 30(\bmod 42)$.
4. Answer the following in short :
(1) Define Euler's Phi function and find the value of ϕ (2013).
(2) Prove that the square of any odd integer is of the form $8 \mathrm{k}+1$, where k is any integer.
(3) State (only) the Fermat's theorem.
(4) State the Fundamental theorem of arithmetic.
(5) Define Well-Ordering Principle.
(6) Prove that $\mathrm{a} \equiv \mathrm{b}$ (modn) if and only if a and b leave the same non-negative remainder when divided by n.
(7) What is the necessary and sufficient condition for the linear congruent equation $\mathrm{a} x \equiv \mathrm{~b}(\operatorname{modn})$ has a solution ?
(8) For $\mathrm{a} \geq 1$, Prove that $\frac{\mathrm{a}\left(\mathrm{a}^{2}+2\right)}{3}$ is an integer.

Seat No. : \qquad

NF-102

December-2015
B.Sc., Sem.-V

Elective-305 : Mathematics
(Discrete Mathematics)
Time : 3 Hours]
[Max. Marks : 70
Instructions : (1) All the questions are compulsory.
(2) Figures to the right indicate full marks of the question/sub-question.
(3) Notations used in this question paper carry their usual meaning.

1. (a) Show that $(\mathrm{P}(\mathrm{X}), \subseteq)$ is a poset. Is it a chain?

OR

Let (L, \leq) be a lattice. For any a, b, c $\in L$, prove that
$\mathrm{b} \leq \mathrm{c} \Rightarrow\left\{\begin{array}{l}\mathrm{a} * \mathrm{~b} \leq \mathrm{a} * \mathrm{c} \\ \mathrm{a} \oplus \mathrm{b} \leq \mathrm{a} \oplus \mathrm{c}\end{array}\right.$
(b) For a lattice (L, \leq) prove that
$\mathrm{a} \leq \mathrm{b} \Leftrightarrow \mathrm{a} * \mathrm{~b}=\mathrm{a} \Leftrightarrow \mathrm{a} \oplus \mathrm{b}=\mathrm{b}$

OR

Explain Hasse diagram and draw the Hasse diagram of ($\left.\mathrm{S}_{150}, \mathrm{D}\right)$.
2. (a) Prove that the direct product of any two distributive lattices is a distributive lattice.

OR

Let (L, \leq) be a lattice. For any a, b, c $\in \mathrm{L}$, prove that

$$
\mathrm{a} \leq \mathrm{c} \Rightarrow \mathrm{a} \oplus(\mathrm{~b} * \mathrm{c}) \leq(\mathrm{a} \oplus \mathrm{~b}) * \mathrm{c}
$$

(b) State and prove De' Morgan's laws in a Boolean algebra.

OR

Show that in a Boolean algebra

$$
\mathrm{a} \leq \mathrm{b} \Leftrightarrow \mathrm{a} * \mathrm{~b}^{\prime}=0 \Leftrightarrow \mathrm{a}^{\prime} \oplus \mathrm{b}=1 \Leftrightarrow \mathrm{~b}^{\prime} \leq \mathrm{a}^{\prime} .
$$

3. (a) Let $\left(\mathrm{B}, *, \oplus,{ }^{\prime}, 0,1\right)$ be a Boolean algebra. A be the set of all atoms of B and $x_{1}, x_{2} \in \mathrm{~B}$. Prove that. (any three)
(1) $\mathrm{A}(0)=\phi$
(2) $\mathrm{A}(1)=\mathrm{A}$
(3) $\mathrm{A}\left(x_{1} * x_{2}\right)=\mathrm{A}\left(x_{1}\right) \cap \mathrm{A}\left(x_{2}\right)$
(4) $\mathrm{A}\left(x_{1} \oplus x_{2}\right)=\mathrm{A}\left(x_{1}\right) \cup \mathrm{A}\left(x_{2}\right)$
(5) $\mathrm{A}\left(x^{\prime}\right)=\mathrm{A}-\mathrm{A}(x)$

OR

Prove that the sum of all minterms in n variables is 1 .
(b) Find POS and SOP canonical forms of the Boolean expression $\alpha\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \oplus x_{2}\right) * x_{3}$

OR

Let $(\mathrm{L}, *, \oplus)$ be a distributive lattice, for $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{L}$, prove that $(\mathrm{a} * \mathrm{~b}) \oplus(\mathrm{b} * \mathrm{c}) \oplus(\mathrm{c} * \mathrm{a})=(\mathrm{a} \oplus \mathrm{b}) *(\mathrm{~b} \oplus \mathrm{c}) *(\mathrm{c} \oplus \mathrm{a})$.
4. Answer in short.
(a) Define Boolean expression.
(b) Define equivalence relation.
(c) Define irreflexive relation.
(d) Draw the Hasse diagram of $\mathrm{S}_{2} \times \mathrm{S}_{3}$.
(e) Draw the Hasse diagram of $\left(\mathrm{S}_{1001}, \mathrm{D}\right)$.
(f) Find all atoms of ($\left.\mathrm{S}_{30}, \mathrm{D}\right)$ Boolean algebra.
(g) Is $\left(\mathrm{S}_{9}, \mathrm{D}\right)$ a Boolean algebra? Why?
(h) Show that 0 is the only complement of 1 in a lattice.

