Seat No. : _____

NE-102

December-2015

B.Sc., Sem.-V

Core Course-304 : Mathematics

Time : 3 Hours]

[Max. Marks: 70

Instructions : (1) There are **5** questions.

- (2) All questions are compulsory.
- 1. (a) Let $S \subset \mathbb{R}^n$, prove that S is convex set if and only if every finite convex linear combination of element in S is also in S. (7)

OR

Define convex hull. Prove that convex hull is always convex.

(b) Prove that $S_k = \{\overline{x} \in \mathbb{R}^n : \| \overline{x} \| \le k\}$, is a convex set in \mathbb{R}^n , where k is positive real number. Is the set $S_1 = \{\overline{x} \in \mathbb{E}^n : \| \overline{x} \| = k\}$ is convex set ? Justify. (7)

OR

Mr. Modi required atleast 10, 12 and 12 units of chemicals A, B and C for his garden. One jar of liquid product contains 3, 2 and 1 unit of A, B, C respectively. A dry product contains 1, 2 and 4 units of A, B, C per carton. If the liquid product sells for $\overline{\mathbf{x}}$ 3 per jar and the dry product sells for $\overline{\mathbf{x}}$ 2 per carton, pose a LPP to show how may of each should he purchase to minimize the cost and to meet the requirements and solve using graphical method.

2. (a) If S_F is a non-empty bounded subset of \mathbb{R}^n for a given L.P. problem then prove that the optimum solution exists at one of the vertex of S_F , where S_F = The set of all feasible solution of L.P. problem. (7)

OR

Prove that every vertex of the set of all feasible solution, is a basic feasible solution of an L.P. problem.

(b) Solve the following L.P.P. by simplex method : Maximize $Z = 3x_1 + x_2 + 3x_3$ subject to condition $2x_1 + x_2 + x_3 \le 2$ $x_1 + 2x_2 + 3x_3 \le 5$ $2x_1 + 2x_2 + x_3 \le 6$ with $x_1, x_2, x_3 \ge 0$. OR NE-102 1 P.T.O.

Apply the two phase process to solve that the following L.P problem : Max Z = $2x_1 - x_2 + x_3$ $x_1 + x_2 - 3x_3 \leq 8$ subject to condition $4x_1 - x_2 + x_3 \ge 2$ $2x_1 + 3x_2 - x_3 \ge 4$ with $x_1, x_2, x_3 \ge 0$. Define Dual of L.P.P. Explain about simplex multipliers. (7) (a) OR State and prove the Fundamental theorem of Duality. Solve the following L.P.P. using simple method : (7) (b) $Min Z = 3x_1 + 5x_2 + 2x_3$ $-x_1 + 2x_2 + 2x_3 \ge 3$ Subject to condition $x_1 + 2x_2 + x_3 \ge 2$ $-2x_1 - x_2 + 2x_3 \ge -4$ with $x_1, x_2 \ge 0$. OR Find the optimal of the following problem by solving its dual : Maximize $Z = 3x_1 + 4x_2$ $x_1 + x_2 \leq 10$ subject to condition $2x_1 + 3x_2 \leq 18$ $x_1 \leq 8$ ≤ 6 x_2 with $x_1, x_2 \ge 0$.

4. (a) Prove that for m origins to n destinations balance type transportation problem has m + n - 1 basic variables. (7) **OR**

Prove that necessary and sufficient condition for the existence of a feasible solution to a transportation problem is $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$.

(b) Solve following transportation problem for minimum transportation cost MODI's Method : (7)

From \downarrow To \rightarrow	Α	B	С	D	a _i		
Ι	42	48	38	37	160		
II	40	49	52	51	150		
III	39	38	40	43	190		
bj	80	90	110	160			
	OR						

NE-102

3.

Salesman \downarrow	Sales districts						
	Α	В	С	D	Ε		
1	32	38	40	28	40		
2	40	24	28	21	36		
3	41	27	33	30	37		
4	22	38	41	36	36		
5	29	33	40	35	39		

In following assignment problem, 5 different jobs are to be assigned to 5 different operators such that the total processing time is minimized. The following matrix represent processing time in hours :

Solve this assignment problem.

5. Answer the following multiple choice :

(14)

- (a) Let $S_1 = \{(x_1, x_2) : 2x_1 + 3x_2 = 5\}$, $S_2 = \{(1, 1)\}$ be two subset of \mathbb{R}^2 . Then $S_1 \cap S_2$ is
 - (i) a convex
 - (ii) not a convex set
 - (iii) cannot say
 - (iv) none of these.

(b) Consider the set $S = \{(x_1, x_2) : x_2^2 \le x_1\}$. Then S has

- (i) no vertex
- (ii) finite number of vertex
- (iii) infinite number of vertex
- (iv) none of these
- (c) Which of the following is true ?
 - (i) An assignment problem can be solved by simplex method.
 - (ii) An assignment problem can be solved by transportation method.
 - (iii) An assignment problem can be solved by Hungarian method.
 - (iv) All of the above
- (d) A basic feasible solution is called ______ if the value of atleast one basic variable is zero.
 - (i) Degenerate
 - (ii) Non-degenerate
 - (iii) Optimum
 - (iv) None of these
- (e) Constraints in an L.P. model represents
 - (i) Limitation
 - (ii) Requirements
 - (iii) Balancing
 - (iv) All of the above
- (f) If a primal LP problem has finite solution, then the dual LP problem should have
 - (i) Finite solution
 - (ii) Infeasible solution
 - (iii) Unbounded solution
 - (iv) None of these

P.T.O.

- (g) When the total supply is not equal to total demand in a transportation problem, then it is called
 - (i) Balanced
 - (ii) Unbalanced
 - (iii) Degenerate
 - (iv) None of these
- (h) The solution to a transportation problem with m-rows and n-columns is feasible if number of positive allocations are
 - (i) m + n
 - (ii) $m \times n$
 - (iii) m + n 1
 - (iv) m + n + 1
- (i) The solution space (region) of dual LP problem is unbounded due to
 - (i) an incorrect formulation of the LP model
 - (ii) objective function is unbounded
 - (iii) neither (i) nor (ii)
 - (iv) both (i) and (ii)
- (j) If there are n workers and n jobs there would be
 - (i) n! solutions
 - (ii) (n-1)! solutions
 - (iii) (n!)n solutions
 - (iv) n solutions
- (k) The system of equations $x_1 + x_2 + x_3 = 4$, $2x_1 + x_2 5x_3 = 3$ is equivalent to the following system with inequalities ?
 - (i) $x_1 x_2 + x_3 \le 4, \ 2x_1 + x_2 5x_3 \le 3, \ -x_1 + 2x_2 + 6x_3 \ge 7$
 - (ii) $x_1 x_2 + x_3 \le 4$, $2x_1 + x_2 5x_3 \le 3$, $x_1 + 2x_2 + 6x_3 \le 1$
 - (iii) $x_1 x_2 + x_3 \le 4, 2x_1 + x_2 5x_3 \le 3, 2x_1 4x_3 \le 1$
 - (iv) $x_1 x_2 + x_3 \le 4$, $2x_1 + x_2 5x_3 \le 3$, $3x_1 4x_3 \ge 7$
- (l) In phase I of the two phase method an artificial variable turns out to be at positive level in the optimal table of Phase-I, then the LPP has
 - (i) no feasible solution
 - (ii) unbounded solution
 - (iii) optimal solution
 - (iv) none of these

(m) Consider the set S = { $(x_1, x_2) : x_1 + x_2 \ge -1, x_1 \le 0, x_2 \le 2$ }. Then S has

- (i) no vertex
- (ii) infinite number of vertices
- (iii) only two vertices
- (iv) none of these.
- (n) The dual of dual LP problem is
 - (i) primal
 - (ii) dual
 - (iii) cannot say
 - (iv) none of these.