\qquad

AP-119

May-2016
M.Sc., Sem.-II

407 :Mathematics
(Differential Geometry - I)
Time : 3 Hours]
[Max. Marks : 70

1. (A) Find parametrizations of the following level curves:
(i) $x^{2}-y^{2}=1$
(ii) $x^{2}+y^{2}+2 x-2 y+1=0$

OR
(A) Find the Cartesian equations of the following parametrized curves:
(i) $\quad \mathrm{r}(\mathrm{t})=\left(\cos ^{2}(\mathrm{t}), \sin ^{2}(\mathrm{t})\right)$,
(ii) $\mathrm{r}(\mathrm{t})=\left(\mathrm{e}^{\mathrm{t}}, \mathrm{t}^{4}+1\right)$
(B) Answer any two :
(i) Let $\mathrm{r}(\mathrm{t})=(\mathrm{t}, \cos \mathrm{h}(\mathrm{t}))$. Calculate the arc length starting at the point $(0,1)$.
(ii) Is the curve r given below unit speed ?
$\mathrm{r}(\mathrm{t})=\left(\frac{3}{5} \cos (\mathrm{t}),-\sin (\mathrm{t}), \frac{4}{5} \cos (\mathrm{t})\right)$.
(iii) Let $\mathrm{r}(\mathrm{t})=\left(\mathrm{t}, \mathrm{t}^{2}, \mathrm{t}^{3}\right)$. Let α be the angle between r (1) and the tangent vector at r (1). Show that $\alpha \neq \frac{\pi}{2}$.
(C) Answer all.
(i) Sketch the curve $r(t)=(\cos (t), \sin (t))$
(ii) Sketch the curve $r(t)=\left(e^{t} \cos (t), e^{t} \sin (t)\right)$
(iii) Sketch the curve $r(t)=(t, \sin (t))$
2. (A) Compute $\mathrm{k}, \mathrm{c}, \mathrm{t}, \mathrm{n}, \mathrm{b}$ for the curve
$\mathrm{r}(\mathrm{t})=\left(\frac{4}{5} \cos (\mathrm{t}), \frac{4}{5} \sin (\mathrm{t}), \frac{3}{5} \mathrm{t}\right)$.
Verify the Frenet - Serret equations.

OR

(A) Find the curvature and torsion for the curve
$r(t)=\left(t, t^{2}, t^{3}\right)$.
Show that it is not a planar curve.
(B) Answer any two :
(i) Suppose r (s) is a unit speed curve in \mathbb{R}^{2}.

Define its signed curvature.
(ii) Suppose $\mathrm{r}(\mathrm{t})=(\mathrm{t}, \sin (\mathrm{t}))$.

Find the signed curvature of r at the point $(0,0)$
(iii) Is the curve given below planar?
$r(t)=\left(1+t^{2}, 1+2 t+t^{2}, 1+t\right)$.
(C) Answer all.
(i) Give an example of a curve whose curvature is zero at every point. (Do not prove)
(ii) Give an example of a curve whose curvature is 1 at every point. (Do not prove)
(iii) Write down (without proof) a formula for the curvature of $\mathrm{r}(\mathrm{t})$.
3. (A) Show that the level surface.
$\frac{x^{2}}{4}+\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$
Is a smooth surface.
Find the equation of the tangent plane of this surface at the point $(2,0,0)$.
OR
(A) Show that
$\sigma(r, \theta)=\left(r \cosh (\theta), r \sinh (\theta), r^{2}\right)$
Is a parametrization of the part $\mathrm{z}>0$ of the hyperbolic paraboloid $\mathrm{z}=x^{2}-\mathrm{y}^{2}$.
Find the equation of the tangent plane at the point $(1,0,1)$.
(B) Answer any two :
(i) Show that an open disc in the $x y$ - plane is a regular surface.
(ii) Show that the plane $x+y-z=1$ can be covered by a single surface patch.
(iii) Give a tangent vector to the surface $x+y-z=1$ at the point $(1,2,3)$.
(C) Answer all.
(i) Give (without proof) a parametrization $\sigma(u, v)$ of the unit sphere $x^{2}+y^{2}+z^{2}=1$.
(ii) Show that the line $r(t)=(t,-t, 0)$ is contained in the surface $\sigma(u, v)=\left(u, v, u^{2}-v^{2}\right)$.
(iii) Give (without proof) an example of a closed bounded surface.
4. (A) Define a generalized cylinder S. Give a parametrization $\sigma(u$, v) for S. Find necessary conditions for σ to be regular. Give an example of a generalized cylinder S.

OR
(A) Define a surface of revolution. Show that the surface $x^{2}+y^{2}-z^{2}=1$. Is a surface of revolution and find a parametrization for this surface.
(B) Answer any two :
(i) Which kind of quadric is S , where S is given by the equation?

$$
\frac{(z-1)^{2}}{2^{2}}-\frac{(x+1)^{2}}{3^{2}}-\frac{y^{2}}{5}=1 \quad ?
$$

(ii) Which kind of quadric is S, where S is given by the equation

$$
x^{2}+y^{2}+z^{2}+4 x-4 y+2 z=0 \quad ?
$$

(iii) Define a triply orthogonal system (of surfaces).
(C) Answer all.
(i) Show that the planes $x=1, \mathrm{y}=2, \mathrm{z}=3$ intersect mutually perpendicularly at the point $(1,2,3)$.
(ii) Give an example (without proof) of a triply orthogonal system.
(iii) Name the quadric given by $x^{2}+y^{2}-z^{2}=0$.
5. (A) Determine the area of the part of the paraboloid $\mathrm{z}=x^{2}+\mathrm{y}^{2}$ with $\mathrm{z} \leq 4$.

OR
(A) Determine the area of the part of the unit sphere with latitude θ greater than $\frac{\pi}{6}$
(B) Answer any two :
(i) Calculate the first fundamental form of the surface $\sigma(u, v)=\left(u, v, u^{2}-v^{2}\right)$.
(ii) Calculate the first fundamental form of the surface $\sigma(u, v)=(u-v, u+v, 2 u+3 v)$.
(iii) Let $\mathrm{S}=\{(x, \mathrm{y}, \mathrm{o}) \mid x, \mathrm{y} \in \mathbb{R}\}$. Give an example of an equiareal map from the plane S to itself which is not an isometry. (Do not prove)
(C) Answer all.

Consider the plane

$$
\mathrm{S}=\{(x, \mathrm{y}, \mathrm{o}) \mid \mathrm{x}, \mathrm{y} \in \mathbb{R}\} .
$$

(i) Give an isometry of S to itself which is not the identity. (Do not prove)
(ii) Give a conformal map from S to itself which is not an isometry. (Do not prove)
(iii) Is the map $\mathrm{f}(x, \mathrm{y}, \mathrm{o})=(x, \mathrm{y}+\sin (x), \mathrm{o})$ an onto map ?

