Seat No. : _____

AP-117

May-2016

M.Sc., Sem.-II

407 : Physics (Quantum Mechanics-II & Mathematical Physics-II)

Time : 3 Hours]

[Max. Marks: 70

7

7

Instructions : (1) Symbols and terminology used have their usual meanings.

(2) Scientific calculator should allow if necessary.

- (3) Assume suitable data wherever necessary.
- (A) What is basic difference between Schrodinger picture and Heisenberg picture ? Show that in Heisenberg approach, equation of motions is Hamiltonian equation of motion.

OR

State the limitation of Hartree approximation. Explain how such limitations are overcome by Hartree-Fock approximation.

Write modified Schrodinger equation in the form of abstract operator \hat{F} .

Derive necessary equation for $F(\vec{r}) \phi(r)$ in Hartree-Fock method.

(B) Discuss Thomas-Fermi approximation for electron gas.

OR

Show that n(r) = $\frac{32}{9} \frac{Z^2}{\pi^3 a_0^3} \frac{\chi 3^{/2}}{x^{3/2}}$.

Define particle exchange operator and find its eigen value.

OR

- (1) Show $\langle \widehat{A} \rangle_{\Psi}$ is constant of motion in Schrodinger picture.
- (2) N-non-interacting bosons are in an infinite potential well defined by,

V(x) = 0, 0 < x < a= ∞ , x < 0 and x > a. Find the ground state energy of the system.

What would be the ground state energy if the particles are fermions ?

AP-117

7

(A) Define annihilation and creation operations for simple harmonic oscillator with unit mass. Show that [â, â⁺] = 1.
Define number operator. Find out eigen value of harmonic oscillator.
What is Fock state ? With necessary equations show that any excited state can be

expressed in terms of ground state.

OR

Write solution of this equation $\nabla^2 \vec{A} (\vec{r}, t) = \frac{1}{c^2} \frac{\partial^2 \vec{A} (\vec{r}, t)}{\partial t^2}$.

Using gauge transformation equation find out k^{th} component of electric field E_k and magnetic field B_k .

Show that average energy $\langle \epsilon_k \rangle$ radiated from the cavity having volume V is given by energy of the harmonic oscillator with unit mass.

(B) Write eigen value equation for the coherent states. How one can calculate (Δp^2) and (Δq^2) in coherent states ?

Considering position \hat{q} and momentum \hat{p} are non-commutative. Show that the product of (Δq) with (Δp) is greater or equal to $\hbar^2/2$.

OR

Write Hamiltonian for the atom placed in the external perturbative potential in terms of non-perturbative potential.

Using method separation of variables method, find out soultion of time dependent Schrodinger equation.

Using such time dependent solution, find out time dependent co-efficient of liner expansion in terms of matrix element of perturbative Hamiltonian.

3. (A) (1) If f(z) is single valued and analytic throughout a simply connected region R, and C is a close curve lying within region R and enclosing a single pole Z_0 then, f(Z_0) = $\frac{1}{2\pi i} \oint \frac{f(Z)}{Z - Z_0} dZ$.

> (2) Using above theorem show that nth order derivative of an analytic function is given as $f^n(Z_0) = \frac{n!}{2\pi i} \oint \frac{f(Z)}{(Z - Z_0)^{n+1}} dZ.$

Show that
$$\int_{0}^{2\pi} \frac{d\theta}{[a+b\cos\theta]^2} = \frac{2\pi}{(a^2-b^2)^{3/2}}; a > b$$
 7

AP-117

7

7

7

(B) Using the method of contour integration, evaluate $\int \frac{dx}{(x^2+1)^2}$. 7

OR

(1) Evaluate
$$\oint_{c} \frac{(\sin Z)^{6}}{\left(Z - \frac{\pi}{6}\right)^{3}} dZ.$$

(2) Find the residue of
$$f(Z) \frac{Z^4}{(Z-1)(Z-2)(Z-3)}$$
 at $Z = 3$. 7

4.

(A) Write a general form of an integral equation. Explain its classifications. Transform a second order differential equation into an integral equation.

OR

Transform a given differential equation into an integral equation.

 $Y''(x) + \omega^2 Y(x) = 0$ with Y(0) = 0 and Y(b) = 0.

(B) Describe separable Kernel method for solving an integral equation.

OR

Describe Green's function for one dimensional problem. Show that a homogenous differential equation with non-homogeneous boundary conditions can be transferred as non-homogeneous equation with homogeneous boundary conditions.

- 5. Answer the following questions :
 - (1) $\hat{U}(t_1, t_2) = \hat{U}(t, t_1) \hat{U}(t_1, t_2)$. (True / False)
 - (2) What will be the value of half-lifetime if the value of Einstein co-efficient for induced absorption is $2 \times 10^{-5} \text{ Sec}^{-1}$?
 - (3) Find out $\langle \cos \theta \rangle$ over solid angle.
 - (4) Find out unknown states when lowering and raising operator operates on that unknown states and it gives |2⟩ and |4⟩ respectively.
 - (5) If $\vec{A} = r^2 + 2r + 1$, then find out \vec{B} .

(6) Show that
$$\begin{bmatrix} A^{+} & A \\ a^{-} & n \end{bmatrix} = -a^{+}$$

AP-117

P.T.O.

7

7

7

14

- (7) What do you mean by exchange degeneracy ?
- (8) $G(x, \xi)$ is a continuous function of x then $\lim_{x \to \xi} G_1(x, \xi) = \lim_{x \to \xi} G_2(x, \xi).$ (True / False)
- (9) State the residue theorem.
- (10) Write the Laurent Series Expansion.

(11)
$$f(Z) = \frac{1+Z}{1-Z}$$
. Represent this function in u + iv form.

(12) Evaluate
$$\oint_{c} \frac{(\sin Z)^{6}}{\left(Z - \frac{\pi}{6}\right)} dZ.$$

- (13) Show that the function $u = x^3 3xy^2$ is harmonic.
- (14) Find the function $f(Z) = Z^2$ is analytic or not.

AP-117