Seat No. : _____

AX-112 May-2016

M.Sc., Sem.-II

411 : Mathematics (Real Analysis)

Time : 3 Hours]

1. (a) Attempt any **one** :

- (1) Prove that convergence in measure need not imply pointwise convergence in general.
- (2) State and prove Riesz theorem.

(b) Attempt any **two** :

- (1) Verify Egorov's theorem for the sequence $f_n : [0, 1] \rightarrow R$ defined by $f_n(x) = x^{n^2}$.
- (2) If $f_n \Rightarrow f$ and $g_n \Rightarrow g$ then show that $f_n + 2g_n \Rightarrow f + 2g$.
- (3) If $f_n \Rightarrow f$ and g is a bounded measurable function then show that $f_{ng} \Rightarrow fg$.

(c) Answer in brief :

- (1) True or False : If $f_n \Rightarrow f$ then $|f_n| \Rightarrow |f|$.
- (2) If E denotes the set of rationals in [0,1], then prove that every real-valued function defined on E is measurable.
- (3) Define : Convergence in measure.
- 2. (a) Attempt any **one** :
 - (1) Define Bernstein polynomial. If f(x) is a continuous function on [0, 1] then prove that the sequence of its Bernstein polynomials converges uniformly to f on [0, 1].
 - (2) Show that the set of all bounded measurable functions and the set of all continuous functions on [a, b] is dense in L_p[a, b] for all 1 ≤ p < ∞.</p>

1

AX-112

[Max. Marks : 70

4

7

3

- (b) Attempt any **two** :
 - (1) If f, $g \in G L_p[a, b]$, then show that $2f 3g \in L_p[a, b]$.
 - (2) Using the theorem of Bernstein polynomials deduce that if f : [a, b] → R is continuous then for every ε > 0 there exists a polynomial function p(x) such that |f(x) p(x)| < ε for all x ∈ [a, b].</p>
 - (3) State and prove Minkowski's inequality for functions.
- (c) Answer in brief :
 - (1) How do we define a norm in $L_p[a, b]$?
 - (2) Express $\cos^2(x+2)$ in the form of a trigonometric polynomial.
 - (3) True or False : $L_3[a, b] \subset L_1[a, b]$.

3. (a) Attempt any **one** :

(1) If $f : [a, b] \to R$ is increasing then show that its derivative f'(x) is measurable and

$$\int_{a}^{b} f'(x) \, dx \le f(b) - f(a).$$

(2) If $E \subset [a, b]$ is of measure zero, then show that there exists a continuous increasing function $\sigma(x)$ on [a, b] such that $\sigma'(x) = +\infty$ on E.

(b) Attempt any **two** :

- (1) Compute the derived numbers of the function f(x) = |x| at x = 0.
- (2) Let $f(x) = \begin{cases} x+2 & \text{if } 0 \le x < 1 \\ 4x & \text{if } 1 \le x \le 2 \end{cases}$

Determine the total variation of f on [0, 2].

(3) If f is of finite variation on R, then show that

$$\lim_{x \to \infty} \mathbf{V}_x^{\infty} \left(\mathbf{f} \right) = 0$$

- (c) Answer in brief :
 - (1) Give the definition of derived number.
 - (2) Let $f(x) = \begin{cases} x+2 & \text{if } 0 \le x < 1 \\ 2x & \text{if } 1 \le x \le 2 \end{cases}$

What is the saltus of f at the point x = 1?

(3) True or False : Every function of finite variation on [a, b] is bounded.

AX-112

3

7

4

- 4. (a) Attempt any **one** :
 - If $f : [a, b] \rightarrow R$ is such that f'(x) is finite everywhere and summable on (1)[a, b], then prove that

$$f(c) = f(a) + \int_{a}^{c} f'(t) dt, a < c \le b.$$

- If f : [a, b] \rightarrow R is absolutely continuous and f'(x) = 0 almost everywhere (2)then prove that f(x) is constant function.
- (b) Attempt any two :
 - (1)Prove that every absolutely continuous function is of finite variation.
 - (2)Prove that the product of two absolutely continuous functions is an absolutely continuous function.
 - Show that every C^1 function on [a, b] is absolutely continuous. (3)
- Answer in brief: (c)
 - Let $\phi(x) = \int f(t) dt$. If the point x = u is the Lebesgue point of f, then show (1) that $\phi'(u) = f(u)$.

(2)Give an example of a differentiable function f on [0, 1] whose derivative is not Lebesgue integrable on [0, 1].

(3) True or False: Every Lipschitz continuous function on [a, b] is absolutely continuous.

5. (a) Attempt any one :

- Show that if $f \in L[-\pi, \pi]$ is continuous at the point $x_0 \in (-\pi, \pi)$, then its (1)Fourier series is cesaro summable at the point x_0 to $f(x_0)$.
- (2)State and prove Riemann-Lebesgue lemma and use it to prove that if $f \in L$ $[-\pi, \pi]$ is differentiable at the point $x_0 \in (-\pi, \pi)$, then $S_N(x_0) \to f(x_0)$, as $N \rightarrow \infty$, where $S_N(x_0)$ denotes the partial sums of the Fourier series of f at the point x_0 .

3

AX-112

7

3

7

- (b) Attempt any **two** :
 - (1) Define Fejer Kernel $F_N(x)$ and show that $F_N(x) \ge 0$ for all N and all x.
 - (2) Show that if the series Σc_n is cesaro-summable and $c_n \ge 0$ for all n, then Σc_n is summable (convergent).
 - (3) State and prove Bessel's inequality for $f \in L_2[-\pi, \pi]$.

(c) Answer in brief :

$$\frac{2}{\pi} \int_{0}^{\pi} D_{N}(x) dx = 1.$$

(2) True or False : The series $\sum_{n=1}^{\infty} (-1)^{n+1}$ is (C, 1) summable.

(3) Can we say that the series $\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n}} + \frac{\cos nx}{n}$ is a Fourier series for some function in L₂[- π , π] ? Why ?