\qquad

AX-112

May-2016
M.Sc., Sem.-II

411 : Mathematics
 (Real Analysis)

Time : 3 Hours]

[Max. Marks : 70

1. (a) Attempt any one:
(1) Prove that convergence in measure need not imply pointwise convergence in general.
(2) State and prove Riesz theorem.
(b) Attempt any two :
(1) Verify Egorov's theorem for the sequence $f_{n}:[0,1] \rightarrow R$ defined by $\mathrm{f}_{\mathrm{n}}(x)=x^{\mathrm{n}^{2}}$.
(2) If $\mathrm{f}_{\mathrm{n}} \Rightarrow \mathrm{f}$ and $\mathrm{g}_{\mathrm{n}} \Rightarrow \mathrm{g}$ then show that $\mathrm{f}_{\mathrm{n}}+2 \mathrm{~g}_{\mathrm{n}} \Rightarrow \mathrm{f}+2 \mathrm{~g}$.
(3) If $\mathrm{f}_{\mathrm{n}} \Rightarrow \mathrm{f}$ and g is a bounded measurable function then show that $\mathrm{f}_{\mathrm{ng}} \Rightarrow \mathrm{fg}$.
(c) Answer in brief :
(1) True or False : If $f_{n} \Rightarrow f$ then $\left|f_{n}\right| \Rightarrow|f|$.
(2) If E denotes the set of rationals in [0,1], then prove that every real-valued function defined on E is measurable.
(3) Define : Convergence in measure.
2. (a) Attempt any one :
(1) Define Bernstein polynomial. If $\mathrm{f}(x)$ is a continuous function on $[0,1]$ then prove that the sequence of its Bernstein polynomials converges uniformly to fon $[0,1]$.
(2) Show that the set of all bounded measurable functions and the set of all continuous functions on $[a, b]$ is dense in $L_{p}[a, b]$ for all $1 \leq p<\infty$.
(b) Attempt any two :
(1) If $f, g \in G L_{p}[a, b]$, then show that $2 f-3 g \in L_{p}[a, b]$.
(2) Using the theorem of Bernstein polynomials deduce that if $f:[a, b] \rightarrow R$ is continuous then for every $\varepsilon>0$ there exists a polynomial function $\mathrm{p}(x)$ such that $|\mathrm{f}(x)-\mathrm{p}(x)|<\varepsilon$ for all $x \in[\mathrm{a}, \mathrm{b}]$.
(3) State and prove Minkowski's inequality for functions.
(c) Answer in brief :
(1) How do we define a norm in $\mathrm{L}_{\mathrm{p}}[\mathrm{a}, \mathrm{b}]$?
(2) Express $\cos ^{2}(x+2)$ in the form of a trigonometric polynomial.
(3) True or False : $\mathrm{L}_{3}[\mathrm{a}, \mathrm{b}] \subset \mathrm{L}_{1}[\mathrm{a}, \mathrm{b}]$.
3. (a) Attempt any one :

7
(1) If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is increasing then show that its derivative $\mathrm{f}^{\prime}(x)$ is measurable and
$\int_{a}^{b} \mathrm{f}^{\prime}(x) \mathrm{d} x \leq \mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})$.
(2) If $\mathrm{E} \subset[\mathrm{a}, \mathrm{b}]$ is of measure zero, then show that there exists a continuous increasing function $\sigma(x)$ on $[\mathrm{a}, \mathrm{b}]$ such that $\sigma^{\prime}(x)=+\infty$ on E .
(b) Attempt any two :
(1) Compute the derived numbers of the function $\mathrm{f}(x)=|x|$ at $x=0$.
(2) Let $\mathrm{f}(x)= \begin{cases}x+2 & \text { if } 0 \leq x<1 \\ 4 x & \text { if } 1 \leq x \leq 2\end{cases}$

Determine the total variation of f on $[0,2]$.
(3) If f is of finite variation on R, then show that
$\lim _{x \rightarrow \infty} \mathrm{~V}_{x}^{\infty}(\mathrm{f})=0$
(c) Answer in brief :
(1) Give the definition of derived number.
(2) Let $\mathrm{f}(x)= \begin{cases}x+2 & \text { if } 0 \leq x<1 \\ 2 x & \text { if } 1 \leq x \leq 2\end{cases}$

What is the saltus of f at the point $x=1$?
(3) True or False : Every function of finite variation on $[a, b]$ is bounded.
4. (a) Attempt any one :
(1) If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is such that $\mathrm{f}^{\prime}(x)$ is finite everywhere and summable on [a, b], then prove that
$f(c)=f(a)+\int_{a}^{c} f^{\prime}(t) d t, a<c \leq b$.
(2) If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is absolutely continuous and $\mathrm{f}^{\prime}(x)=0$ almost everywhere then prove that $\mathrm{f}(x)$ is constant function.
(b) Attempt any two :
(1) Prove that every absolutely continuous function is of finite variation.
(2) Prove that the product of two absolutely continuous functions is an absolutely continuous function.
(3) Show that every C^{1} function on $[\mathrm{a}, \mathrm{b}]$ is absolutely continuous.
(c) Answer in brief :
(1) Let $\phi(x)=\int_{a}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt}$. If the point $x=\mathrm{u}$ is the Lebesgue point of f , then show that $\phi^{\prime}(u)=f(u)$.
(2) Give an example of a differentiable function f on [0, 1] whose derivative is not Lebesgue integrable on $[0,1]$.
(3) True or False: Every Lipschitz continuous function on [a, b] is absolutely continuous.
5. (a) Attempt any one :
(1) Show that if $\mathrm{f} \in \mathrm{L}[-\pi, \pi]$ is continuous at the point $x_{0} \in(-\pi, \pi)$, then its Fourier series is cesaro summable at the point x_{0} to $\mathrm{f}\left(x_{0}\right)$.
(2) State and prove Riemann-Lebesgue lemma and use it to prove that if $\mathrm{f} \in \mathrm{L}$ $[-\pi, \pi]$ is differentiable at the point $x_{0} \in(-\pi, \pi)$, then $\mathrm{S}_{\mathrm{N}}\left(x_{0}\right) \rightarrow \mathrm{f}\left(x_{0}\right)$, as $\mathrm{N} \rightarrow \infty$, where $\mathrm{S}_{\mathrm{N}}\left(x_{0}\right)$ denotes the partial sums of the Fourier series of f at the point x_{0}.
(b) Attempt any two :
(1) Define Fejer Kernel $\mathrm{F}_{\mathrm{N}}(x)$ and show that $\mathrm{F}_{\mathrm{N}}(x) \geq 0$ for all N and all x.
(2) Show that if the series $\Sigma \mathrm{c}_{\mathrm{n}}$ is cesaro-summable and $\mathrm{c}_{\mathrm{n}} \geq 0$ for all n , then $\Sigma \mathrm{c}_{\mathrm{n}}$ is summable (convergent).
(3) State and prove Bessel's inequality for $\mathrm{f} \in \mathrm{L}_{2}[-\pi, \pi]$.
(c) Answer in brief :
(1) Show that

$$
\frac{2}{\pi} \int_{0}^{\pi} \mathrm{D}_{\mathrm{N}}(x) \mathrm{d} x=1
$$

(2) True or False: The series $\sum_{n=1}^{\infty}(-1)^{n+1}$ is (C, 1) summable.
(3) Can we say that the series $\sum_{n=1}^{\infty} \frac{\sin n x}{\sqrt{n}}+\frac{\cos n x}{n}$ is a Fourier series for some function in $\mathrm{L}_{2}[-\pi, \pi]$? Why ?

