\qquad

AX-102

May-2016
B.Sc., Sem.-II

CC-103 : Electronics

Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) All questions carry equal marks.
(2) Symbols have their own meaning.

1. (a) Discuss the characteristics of CB circuit.

OR
Discuss the characteristics of CE circuit.
(b) Define stability. Draw a circuit of fixed bias and obtain stability factor S .

OR
Draw a circuit diagram of collector to base bias and obtain stability factor S .
2. (a) Considering a transistor as a 4 terminal active network, define and explain the hybrid or h parameters. Also draw and explain the h parameter equivalent circuit.

OR
(i) Draw the ac equivalent circuit of a CE amplifier and find the equations for voltage gain and power gain.
(ii) In a transistor amplifier, when signal changes by $0.04 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}$ changes by $20 \mathrm{~mA} \& \mathrm{I}_{\mathrm{C}}$ changes by 2 mA . If $\mathrm{R}_{\mathrm{C}}=5 \mathrm{k} \Omega \& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, find current gain, input impedance, ac load, voltage gain and power gain.
(b) Give comparison of CB, CC \& CE amplifier.

OR
Define :
(1) Z parameter
(2) Y parameter
3. (a) State and prove reciprocity theorem. 7

OR
Give conversion between T network to π network and π network to T network.
(b) Explain parallel resonance circuit and derive the expression of resonance frequency.

OR

What is bandwidth ? Obtain the equation of bandwidth $\Delta \mathrm{f}=\frac{\mathrm{fr}}{\mathrm{Q}}$ in the series resonance circuit.
4. (a) Explain don't care condition. Reduce the logic equation $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,3,7)$ + d ($10,11,12,13,14,15)$ by using K-map.

OR

You are given the following Boolean equation $Y=\bar{A} B \bar{C} D+\bar{A} \bar{B} C \bar{D}+A \bar{B} C \bar{D}$. Show the simplified NAND-NAND circuit for this. Also show the simplified NOR-NOR circuit.
(b) Write notes on (any one) :
(i) Seven segment decoder
(ii) Multiplexer
5. Answer in short :
(1) Draw the symbol for NPN transistor.
(2) In which configuration amplifier has highest voltage gain?
(3) Obtain the relation between $\beta \& \alpha$.
(4) What is equivalent network ?
(5) Define impedance.
(6) Define potential source.
(7) What is an active region?
(8) Define Q.
(9) Give the statement of maximum power transfer theorem.
(10) Define : Decoder
(11) Define Demultiplexer.
(12) What is ROM ?
(13) What is overlapping in K-map ?
(14) How does EX-OR gate differ from OR gate ?

