Seat No. : \qquad

AB-120

April-2016

B.Sc., Sem.-VI
 CC-307 : Statistics
 (Distribution Theory - II)

Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) All questions carry equal marks.
(2) Scientific calculator is permitted.

1. (a) State Cauchy distribution. Let X has Cauchy $(0, \lambda), 0$ is location parameter and λ is scale parameter, obtain the distribution of $1 / \mathrm{X}$. Obtain also characteristic function of the distribution of 1/X.

OR

State Laplace distribution. If $X_{1}, X_{2}, X_{3}, X_{4}$ are independent standard normal variates then show that $\mathrm{X}_{1} \mathrm{X}_{2}-\mathrm{X}_{3} \mathrm{X}_{4}$ follows standard Laplace distribution.
(b) Let X a and Y are independent uniform $\mathrm{U}(0,1)$ variates. Show that $\mathrm{Z}=\log (\mathrm{X} / \mathrm{Y})$ follows standard Laplace distribution. Obtain mode of the distribution of Z .

OR
State lognormal distribution. Obtain coefficient of variation for lognormal distribution.
2. (a) State bivariate normal distribution of random variable (X,Y). Derive conditional distribution of X given $Y=y$.

OR

Obtain characteristic function of bivariate normal distribution. Hence deduce the marginal distribution of each variable.
(b) Let $\mathrm{Z}=(\mathrm{X}, \mathrm{Y}) \sim \mathrm{N}(1,-1,4,9,0.2)$, find out (i) $\mathrm{P}(\mathrm{X}>\mathrm{Y})$ (ii) distribution of $2 \mathrm{X}-3 \mathrm{Y}$ (iii) distribution of X given $\mathrm{Y}=2$.

OR
The probability density function of bivariate normal distribution is given by $\mathrm{f}(x, \mathrm{y})=\operatorname{Cexp}\left\{-\mathrm{K}\left(x^{2}+\mathrm{y}^{2}-2.6 x+2.6 \mathrm{y}-0.6 x y+0.6\right)\right\}$
Determine (i) constants C and K (ii) Parameters of the distribution.
3. (a) State and prove Tchebychev's inequality. When the equality sign can be achieved ?

OR

State and prove Bernoulli law of large numbers.
(b) Sequence of independent random variables $\mathrm{X}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots .$. . have the distribution as $\mathrm{P}\left(\mathrm{X}_{\mathrm{k}}= \pm 2^{\mathrm{k}}\right)=2^{-(2 \mathrm{k}+1)}, \quad \mathrm{P}\left(\mathrm{X}_{\mathrm{k}}=0\right)=1-2^{-2 \mathrm{k}}$
Verify whether the WLLN holds or not.

OR

Let $\mathrm{X} \sim \mathrm{N}(4,16)$. Using Tchebychev's inequality derive a lower bound for the $\mathrm{P}(-1<\mathrm{X}<9)$. Compare it with the actual value of the probability.
4. (a) State and prove Central Limit Theorem (CLT) for independent identically distributed random variables. Discuss its importance.

OR

State and prove Lindburg-Levy form of central limit theorem. How it differ from other forms of CLT.
(b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . . \mathrm{X}_{\mathrm{n}}$ are iid exponential variates with mean 2. Find the asymptotic distribution of $Y=\sum_{i=1}^{100} X_{i}$. Hence find $\mathrm{P}(150<\mathrm{Y}<260)$.

OR

Let $X_{1}, X_{2}, \ldots, X_{n}$ are Bernoulli variates with parameter 0.2. Let $Y=\sum_{i=1}^{100} X_{i}^{2}$. Using CLT find $\mathrm{P}(15<\mathrm{Y}<25)$.
5. Answer the following :
(i) If $\mathrm{X} \sim \operatorname{Cauchy}(2,1.5)$, state the pdf of $3 \mathrm{X}+2$.
(ii) State additive property of Cauchy distribution.
(iii) State characteristic function of Laplace distribution.
(iv) State CDF of standard Laplace distribution.
(v) State mgf of log normal distribution.
(vi) If $\mathrm{X} \sim \mathrm{N}$ (2.3) write the pdf of $\exp (\mathrm{X})$.
(vii) Write the pdf of standard bivariate normal distribution.
(viii) If $X \sim N(2,3)$ and $Y \sim N(-2,3)$, X and Y are independent, write the pdf of the random variable $\mathrm{Z}=(\mathrm{X}, \mathrm{Y})$.
(ix) If $\mathrm{X} \sim \mathrm{N}_{2}(1,-1,4,9,0.75)$, state the conditional variance of Y given $\mathrm{X}=0$.
(x) State convergence in probability.
(xi) State convergence in distribution.
(xii) Which types of convergence is used in WLLN?
(xiii) State Liapounoff's theorem on CLT.
(xiv) State Cauchy-Shewhart's inequality.

