\qquad

AA-112

April- 2016
M.Sc., Sem.-IV

507 : Mathematics
(Functional Analysis - II)

Time : 3 Hours]

[Max. Marks : 70

1. (a) Attempt any one :
(i) Let H be a Hilbert space, and let f be an arbitrary functional in H^{*} then prove that there is a unique vector y in H such that $\mathrm{f}(x)=(x, y)$ for all x in H .
(ii) If A is a positive operator on H , then prove that $\mathrm{I}+\mathrm{A}$ is non-singular. Hence prove that $\mathrm{I}+\mathrm{T} * \mathrm{~T}$ and $\mathrm{I}+\mathrm{TT}^{*}$ are non-singular for any T in $\mathrm{B}(\mathrm{H})$.
(b) Attempt any two :
(i) Let $H=\mathbb{R}^{2}, K=\mathbb{R}$ and $A \in B L(H)$ is given by the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Prove that A is positive if and only if $b=c, a \geq 0, d \geq 0, a d \geq b^{2}$.
(ii) Let H be a Hilbert space and $\mathrm{T} \in \mathrm{B}(\mathrm{H})$ be non-zero, self-adjoint then prove that T^{n} is also non-zero, self-adjoint. (Here, n is a positive integer)
(iii) By an example prove that $0 \leq \mathrm{A} \leq \mathrm{B}$ does not imply $\mathrm{A}^{2} \leq \mathrm{B}^{2}$.
(c) Answer very briefly.
(i) Prove that $\left\|f_{y}\right\|=\|y\|$ for all y in H.
(ii) If H is a Hilbert space over \mathbb{R}, prove that the mapping $y \rightarrow f_{y}$ form H to H^{*} is linear.
(iii) Define the normal operator. Give an example of a normal operator that is not unitary.
2. (a) Attempt any one :
(i) Prove : $\mathrm{T} * \mathrm{~T}=\mathrm{I} \Leftrightarrow(\mathrm{T} x, \mathrm{Ty})=(x, \mathrm{y})$ for all $x, \mathrm{y} \Leftrightarrow\|\mathrm{T} x\|=\|x\|$ for all x.
(ii) If P is the projection on M , then prove that

$$
x \in \mathrm{M} \Leftrightarrow \mathrm{P} x=x \Leftrightarrow\|\mathrm{P} x\|=\|x\| .
$$

(b) Attempt any two.
(i) Show that the unitary operators on H form a group.
(ii) If P and Q are projections on M and N respectively. Under what condition(s) does PQ become a projection? What is the range of PQ ?
(iii) Give an example of a linear map on R^{2} that does not have eigen value.
(c) Answer very briefly:
(i) If $\mathrm{T}=\alpha \mathrm{I}$, then find the spectrum of T .
(ii) Define the Spectral resolution of T.
(iii) Give an example of a positive operator that is not a projection.
3. (a) Attempt any one.
(i) State and prove the spetral theorem in the case of finite dimensional H .
(ii) Prove that two matrices in A_{n} are similar if and only if they are the matrices of a single operator on H relative to (possibly) different bases.
(b) Attempt any two :
(i) If T is non-singular, prove that $\mathrm{k} \in \sigma(\mathrm{T}) \Leftrightarrow 1 / \mathrm{k} \in \sigma\left(\mathrm{T}^{-1}\right)$
(ii) If $T \in B(H)$ and N a normal operator. Show that T commutes with N^{*} if T commutes with N .
(iii) If $\mathrm{T}^{\mathrm{k}}=0$ for some positive integer k then prove that $\sigma(\mathrm{T})=\{0\}$.
(c) Answer very briefly.
(i) Can an 11×11 real matrix have the empty spectrum? Justify.
(ii) True or false : The map T on \mathbb{R}^{2} defined by $\mathrm{T}(x, \mathrm{y})=(x-\mathrm{y}, x+\mathrm{y})$ is invertible. Justify.
(iii) Find the matrix corresponding to the map $\mathrm{A}(x, y)=(\mathrm{y}, x)$ on \mathbb{R}^{2}.
4. (a) Attempt any one.
(i) State and prove Gelfand-Mazur theorem.
(ii) If X is a Banach space and $\mathrm{A} \in \mathrm{BL}(\mathrm{X})$, prove that A is invertible if and only if A is bijection.
(b) Attempt any two :
(i) Find the spectrum of $\mathrm{A}(x)=\left(0, x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots.\right)$ where $x \in l^{p}$.
(ii) Characterize the approximate eigenspectrum $\sigma_{a}(\mathrm{~T})$ of T .
(iii) Define the spectral radius $r_{\sigma}(\mathrm{A})$ of A . Give an example to show that $\mathrm{r}_{\sigma}(\mathrm{A})$ can be strictly less than $\|\mathrm{A}\|$.
(c) Answer very briefly:
(i) Is the operator $\mathrm{A}(x, \mathrm{y}, \mathrm{z})=(0, \mathrm{y}, \mathrm{z})$ on \mathbb{R}^{3} invertible ? Justify.
(ii) Find an operator A such that $\sigma(\mathrm{A})=[0,1]$.
(iii) True or false : Every non-zero projection is invertible. Justify.
5. (a) Attempt any one.
(i) Let Y be a Banach space, $\mathrm{F}_{\mathrm{n}} \in \mathrm{CL}(\mathrm{X}, \mathrm{Y}), \mathrm{F} \in \mathrm{BL}(\mathrm{X}, \mathrm{Y})$ and $\mathrm{F}_{\mathrm{n}} \rightarrow \mathrm{F}$. Then prove that $\mathrm{F} \in \mathrm{CL}(\mathrm{X}, \mathrm{Y})$.
(ii) Prove that $\mathrm{F} \in \mathrm{BL}(\mathrm{X}, \mathrm{Y})$ is compact if and only if for every bounded sequence $\left(x_{\mathrm{n}}\right)$ in X . $\left(\mathrm{F}\left(x_{\mathrm{n}}\right)\right)$ has a subsequence which converges in Y .
(b) Attempt any two.
(i) Prove that every $\mathrm{m} \times \mathrm{n}$ matrix defines a compact map.
(ii) Prove that $\mathrm{CL}(\mathrm{X}, \mathrm{Y})$ is a linear subspace of $\mathrm{BL}(\mathrm{X}, \mathrm{Y})$.
(iii) If A is a compact operator on X , prove that the eigenspace of A corresponding to a non-zero eigen value of A is finite dimensional.
(c) Answer very briefly:
(i) True or false : $\mathrm{A}(x)=\alpha x$ (where α is a non-zero scalar) is a compact operator on l^{2}. Justify.
(ii) Prove or disprove the linear map T from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\mathrm{T}(x, \mathrm{y})=$ (y, x) is compact.
(iii) Can we find a compact operator A such that $\sigma_{a}(A)=[0.1]$? Justify.

AA-112

