Seat No. : _____

AA-112

April-2016

M.Sc., Sem.-IV

507 : Mathematics (Functional Analysis – II)

Time: 3 Hours]

[Max. Marks: 70

- 1. (a) Attempt any **one** :
 - (i) Let H be a Hilbert space, and let f be an arbitrary functional in H* then prove that there is a unique vector y in H such that f(x)=(x, y) for all x in H.
 - (ii) If A is a positive operator on H, then prove that I + A is non-singular. Hence prove that I + T * T and I + TT* are non-singular for any T in B(H).
 - (b) Attempt any **two** :
 - (i) Let $H = \mathbb{R}^2$, $K = \mathbb{R}$ and $A \in BL(H)$ is given by the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Prove that A is positive if and only if b = c, $a \ge 0$, $d \ge 0$, $ad \ge b^2$.
 - (ii) Let H be a Hilbert space and $T \in B(H)$ be non-zero, self-adjoint then prove that T^n is also non-zero, self-adjoint. (Here, n is a positive integer)
 - (iii) By an example prove that $0 \le A \le B$ does not imply $A^2 \le B^2$.
 - (c) Answer very briefly.
 - (i) Prove that $|| f_y || = || y ||$ for all y in H.
 - (ii) If H is a Hilbert space over \mathbb{R} , prove that the mapping $y \to f_y$ form H to H* is linear.
 - (iii) Define the normal operator. Give an example of a normal operator that is not unitary.
- 2. (a) Attempt any **one** :
 - (i) Prove : $T^*T = I \Leftrightarrow (Tx, Ty) = (x, y)$ for all $x, y \Leftrightarrow ||Tx|| = ||x||$ for all x.
 - (ii) If P is the projection on M, then prove that $x \in M \Leftrightarrow Px = x \Leftrightarrow ||Px|| = ||x||.$

AA-112

P.T.O.

7

4

7

3

- (b) Attempt any **two**.
 - (i) Show that the unitary operators on H form a group.
 - (ii) If P and Q are projections on M and N respectively. Under what condition(s) does PQ become a projection ? What is the range of PQ ?
 - (iii) Give an example of a linear map on R^2 that does not have eigen value.
- (c) Answer very briefly :
 - (i) If $T = \alpha I$, then find the spectrum of T.
 - (ii) Define the Spectral resolution of T.
 - (iii) Give an example of a positive operator that is not a projection.
- 3. (a) Attempt any **one**.
 - (i) State and prove the spetral theorem in the case of finite dimensional H.
 - (ii) Prove that two matrices in A_n are similar if and only if they are the matrices of a single operator on H relative to (possibly) different bases.
 - (b) Attempt any **two** :
 - (i) If T is non-singular, prove that $k \in \sigma(T) \Leftrightarrow 1/k \in \sigma(T^{-1})$
 - (ii) If $T \in B(H)$ and N a normal operator. Show that T commutes with N* if T commutes with N.
 - (iii) If $T^k = 0$ for some positive integer k then prove that $\sigma(T) = \{0\}$.
 - (c) Answer very briefly.
 - (i) Can an 11×11 real matrix have the empty spectrum? Justify.
 - (ii) True or false : The map T on \mathbb{R}^2 defined by T(x, y) = (x y, x + y) is invertible. Justify.
 - (iii) Find the matrix corresponding to the map A(x, y) = (y, x) on \mathbb{R}^2 .
- 4. (a) Attempt any **one**.
 - (i) State and prove Gelfand-Mazur theorem.
 - (ii) If X is a Banach space and $A \in BL(X)$, prove that A is invertible if and only if A is bijection.

AA-112

4

3

7

4

3

7

- (b) Attempt any **two** :
 - (i) Find the spectrum of $A(x) = \left(0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \dots\right)$ where $x \in l^p$.
 - (ii) Characterize the approximate eigenspectrum $\sigma_a(T)$ of T.
 - (iii) Define the spectral radius $r_{\sigma}(A)$ of A. Give an example to show that $r_{\sigma}(A)$ can be strictly less than ||A||.
- (c) Answer very briefly :
 - (i) Is the operator A(x, y, z) = (0, y, z) on \mathbb{R}^3 invertible ? Justify.
 - (ii) Find an operator A such that $\sigma(A) = [0,1]$.
 - (iii) True or false : Every non-zero projection is invertible. Justify.
- 5. (a) Attempt any **one**.
 - (i) Let Y be a Banach space, $F_n \in CL(X, Y)$, $F \in BL(X, Y)$ and $F_n \rightarrow F$. Then prove that $F \in CL(X, Y)$.
 - (ii) Prove that $F \in BL(X, Y)$ is compact if and only if for every bounded sequence (x_n) in X. $(F(x_n))$ has a subsequence which converges in Y.
 - (b) Attempt any **two**.
 - (i) Prove that every $m \times n$ matrix defines a compact map.
 - (ii) Prove that CL(X, Y) is a linear subspace of BL(X, Y).
 - (iii) If A is a compact operator on X, prove that the eigenspace of A corresponding to a non-zero eigen value of A is finite dimensional.
 - (c) Answer very briefly :
 - (i) True or false : $A(x) = \alpha x$ (where α is a non-zero scalar) is a compact operator on l^2 . Justify.
 - (ii) Prove or disprove the linear map T from $\mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (y, x) is compact.
 - (iii) Can we find a compact operator A such that $\sigma_a(A) = [0.1]$? Justify.

4

7

3

3

4