Seat No. : _____

ND-102

December-2015

B.Sc., Sem.-V

Core Course-303 : Mathematics (Complex Variables and Fourier Series)

Time : 3 Hours]

[Max. Marks: 70

7

7

- **Instructions :** (1) All questions are compulsory.
 - (2) Q. 5 is of short questions.
 - (3) Each question carries 14 marks.

1. (a) In the system C of complex numbers define convergence of sequence.

Prove that $\left(\frac{\overline{z}_1}{z_2}\right) = \frac{\overline{z}_1}{\overline{z}_2}$, $z_2 \neq 0$, for $z_1, z_2 \in C$. Obtain the roots of the equation $z^4 - z^3 + z^2 - z + 1 = 0$.

OR

Define trigonometric and hyperbolic functions for the complex variable. Show that $|\sin z|^2 + |\cos z|^2 = ch^2y$; $z \in C$. Also, express $\sqrt{3} - i$ in the exponential form.

(b) State and prove the De Moivre's theorem for the complex numbers. Find all the values of $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{\frac{3}{4}}$.

OR

Define convergence of the series of complex numbers. Suppose that $z_n = x_n + iy_n$

$$(n = 1, 2, ...)$$
 and $S = X + iY$, then prove that $\sum_{n=1}^{\infty} z_n = S$ if and only if $\sum_{n=1}^{\infty} x_n = X$
and $\sum_{n=1}^{\infty} y_n = Y$.

ND-102

P.T.O.

2. (a) Define : Harmonic conjugate of a function, Entire function. If f(z) = u(x, y) + iv(x, y) is analytic in a domain D with non-zero constant modulus, then prove that the function f is constant.

OR

If
$$f(z) = u(x, y) + iv(x, y)$$
; $z = x + iy$ and $z_0 = x_0 + iy_0$ and $w_0 = u_0 + iv_0$, then prove
that $\lim_{z \to z_0} f(z) = w_0 \Leftrightarrow \lim_{(x,y) \to (x_0 \cdot y_0)} u(x, y) = u_0$ and $\lim_{(x,y) \to (x_0 \cdot y_0)} v(x, y) = v_0$.

(b) State Cauchy-Riemann equations in the polar form and verify the same for the function z^n . Find the harmonic conjugate of the function $x^3 - 3xy^2 + 2x$ and obtain the corresponding analytic function terms of z.

OR

The function f is defined as $f(z) = \frac{(\overline{z})^2}{z}$; $z \neq 0$ and f(z) = 0; z = 0, the show that f(z) is not analytic at z = 0; even if it satisfies Cauchy-Riemann equations at the origin.

3. (a) Define : Linear transformation, Bilinear transformation and Conformal mapping. Prove : An analytic function f(z) is conformal at z_0 if and only if $f'(z_0) \neq 0$.

7

7

7

7

OR

If α , β are fixed points of a bilinear transformation w = f(z), then prove that $\frac{w - \alpha}{w - \beta} = \lambda \frac{z - \alpha}{z - \beta}$; where λ is a complex constant. Find the fixed points of $w = \frac{z - 1}{z + 1}$.

(b) Obtain the images of the curves y = x - 1 and y = 0 under the mapping $w = \frac{1}{z}$, $z \neq 0$ also, examine conformality of the mapping at z = 1.

OR

Find the critical points of the mapping $w = 2z^3 - 15z^2 + 36z + 7$ and find its angle of rotation at the point 1 - i. Obtain in image of |z - i| < 3 under the mapping $w = \frac{iz + 1}{2i + z}$.

ND-102

4. (a) Prove : If f(x) is Riemann integrable in $(-\pi, \pi)$, then the series $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ converges, where a_n and b_n are the Fourier coefficients of f(x). 7

OR

Define the Fourier series for the function f and obtain the same for the function $f(x) = x \sin x$, hence deduce that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \dots$

(b) Find the Fourier series expansion of the function $f(x) = x - x^2$ in $[-\pi, \pi]$.

OR

Obtain the Fourier series for the function $f(x) = x^2$ in $(0, 2\pi)$.

5. Attempt any seven :

- (i) For the complex number z = -1 i, find the principal argument Arg (z).
- (ii) Find the real and imaginary parts of the function $\frac{\overline{z}}{z}$ where, $z = a + ib \neq 0$.
- (iii) State the C-R equations and the derivative of the function f(z) = u + iv in Cartesian form.

(iv) Simplify
$$\log\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right)$$
, also write it in a polar form.

(v) Find the singular points of
$$\frac{z^2 + 1}{(z - 1)(z^2 - 7z + 12)}$$
 and $|z|^2$.

(vi) Obtain
$$\int_{-\pi}^{\pi} \sin mx \cos nx \, dx$$
 for all m, n = 0, 1, 2,
(vii) Find $\int_{-\pi}^{\pi} \cos^2 nx \, dx$.

(viii) Is the function $f(z) = (\overline{z})^2$ analytic ? Justify.

(ix) State the Bessel's inequality.

ND-102

7

3

ND-102