\qquad

ND-102

December-2015
B.Sc., Sem.-V

Core Course-303 : Mathematics
(Complex Variables and Fourier Series)

Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) All questions are compulsory.
(2) Q. 5 is of short questions.
(3) Each question carries $\mathbf{1 4}$ marks.

1. (a) In the system C of complex numbers define convergence of sequence.

Prove that $\left(\frac{\overline{\mathrm{z}}_{1}}{\mathrm{z}_{2}}\right)=\frac{\overline{\mathrm{z}}_{1}}{\overline{\mathrm{z}}_{2}}, \mathrm{z}_{2} \neq 0$, for $\mathrm{z}_{1}, \mathrm{z}_{2} \in \mathrm{C}$. Obtain the roots of the equation
$z^{4}-z^{3}+z^{2}-z+1=0$.

OR

Define trigonometric and hyperbolic functions for the complex variable. Show that $|\sin z|^{2}+|\cos z|^{2}=\operatorname{ch}^{2} y ; z \in C$. Also, express $\sqrt{3}-i$ in the exponential form.
(b) State and prove the De Moivre's theorem for the complex numbers. Find all the values of $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{\frac{3}{4}}$.

OR

Define convergence of the series of complex numbers. Suppose that $\mathrm{z}_{\mathrm{n}}=x_{\mathrm{n}}+\mathrm{iy} \mathrm{y}_{\mathrm{n}}$ $\left(\mathrm{n}=1,2, \ldots\right.$) and $\mathrm{S}=\mathrm{X}+\mathrm{iY}$, then prove that $\sum_{\mathrm{n}=1}^{\infty} \mathrm{z}_{\mathrm{n}}=\mathrm{S}$ if and only if $\sum_{\mathrm{n}=1}^{\infty} x_{\mathrm{n}}=\mathrm{X}$ and $\sum_{\mathrm{n}=1}^{\infty} \mathrm{y}_{\mathrm{n}}=\mathrm{Y}$.
2. (a) Define : Harmonic conjugate of a function, Entire function. If $f(z)=u(x, y)+$ $\operatorname{iv}(x, y)$ is analytic in a domain D with non-zero constant modulus, then prove that the function f is constant.

OR

If $\mathrm{f}(\mathrm{z})=\mathrm{u}(x, \mathrm{y})+\mathrm{iv}(x, \mathrm{y}) ; \mathrm{z}=x+$ iy and $\mathrm{z}_{0}=x_{0}+\mathrm{iy}_{0}$ and $\mathrm{w}_{0}=\mathrm{u}_{0}+\mathrm{iv}_{0}$, then prove that $\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{w}_{0} \Leftrightarrow \lim _{(x, \mathrm{y}) \rightarrow\left(x_{0} \cdot \mathrm{y}_{0}\right)} \mathrm{u}(x, \mathrm{y})=\mathrm{u}_{0}$ and $\lim _{(x, \mathrm{y}) \rightarrow\left(x_{0} \cdot \mathrm{y}_{0}\right)} \mathrm{v}(x, \mathrm{y})=\mathrm{v}_{0}$.
(b) State Cauchy-Riemann equations in the polar form and verify the same for the function z^{n}. Find the harmonic conjugate of the function $x^{3}-3 x y^{2}+2 x$ and obtain the corresponding analytic function terms of z.

OR

The function f is defined as $\mathrm{f}(\mathrm{z})=\frac{(\overline{\mathrm{z}})^{2}}{\mathrm{z}} ; \mathrm{z} \neq 0$ and $\mathrm{f}(\mathrm{z})=0 ; \mathrm{z}=0$, the show that $f(z)$ is not analytic at $z=0$; even if it satisfies Cauchy-Riemann equations at the origin.
3. (a) Define : Linear transformation, Bilinear transformation and Conformal mapping. Prove : An analytic function $f(z)$ is conformal at z_{0} if and only if $f^{\prime}\left(z_{0}\right) \neq 0$.

OR

If α, β are fixed points of a bilinear transformation $w=f(z)$, then prove that $\frac{w-\alpha}{w-\beta}=\lambda \frac{z-\alpha}{z-\beta}$; where λ is a complex constant. Find the fixed points of $\mathrm{w}=\frac{\mathrm{z}-1}{\mathrm{z}+1}$.
(b) Obtain the images of the curves $\mathrm{y}=x-1$ and $\mathrm{y}=0$ under the mapping $\mathrm{w}=\frac{1}{\mathrm{Z}}$, $\mathrm{z} \neq 0$ also, examine conformality of the mapping at $\mathrm{z}=1$.

OR
Find the critical points of the mapping $w=2 z^{3}-15 z^{2}+36 z+7$ and find its angle of rotation at the point $1-\mathrm{i}$. Obtain in image of $|z-i|<3$ under the mapping $w=\frac{i z+1}{2 i+z}$.
4. (a) Prove : If $f(x)$ is Riemann integrable in $(-\pi, \pi)$, then the series $\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$ converges, where a_{n} and b_{n} are the Fourier coefficients of $f(x)$.

OR

Define the Fourier series for the function f and obtain the same for the function $\mathrm{f}(x)=x \sin x$, hence deduce that $\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1 \cdot 3}-\frac{1}{3.5}+\frac{1}{5 \cdot 7}-\ldots$
(b) Find the Fourier series expansion of the function $\mathrm{f}(x)=x-x^{2}$ in $[-\pi, \pi]$.

OR

Obtain the Fourier series for the function $\mathrm{f}(x)=x^{2}$ in $(0,2 \pi)$.
5. Attempt any seven :
(i) For the complex number $\mathrm{z}=-1-\mathrm{i}$, find the principal $\operatorname{argument} \operatorname{Arg}(\mathrm{z})$.
(ii) Find the real and imaginary parts of the function $\frac{\bar{z}}{z}$ where, $z=a+i b \neq 0$.
(iii) State the C-R equations and the derivative of the function $f(z)=u+i v$ in Cartesian form.
(iv) Simplify $\log \left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)$, also write it in a polar form.
(v) Find the singular points of $\frac{z^{2}+1}{(z-1)\left(z^{2}-7 z+12\right)}$ and $|z|^{2}$.
(vi) Obtain $\int_{-\pi}^{\pi} \sin m x \cos n x d x$ for all $m, n=0,1,2, \ldots$.
(vii) Find $\int_{-\pi}^{\pi} \cos ^{2} n x d x$.
(viii) Is the function $\mathrm{f}(\mathrm{z})=(\overline{\mathrm{z}})^{2}$ analytic ? Justify.
(ix) State the Bessel's inequality.

