Seat No. : _____

NC-102

December-2015

B.Sc., Sem.-V

Core Course-302 : Mathematics (Analysis – I)

Time : 3 Hours] [Max. Marks		: 70
Instructions :(1)All questions are compulsory.(2)Figure to right indicate full marks of the questions/sub question.(3)Notations used in this question paper carry their usual meaning.		
1. (a)	Prove that countable union of countable sets is again countable. OR Let $f: A \to B$ and let G and H be subsets of B. Show that $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H).$	7
(b)	State and prove (rational) density theorem. OR Prove that an upper bound " α " of a non empty set <i>S</i> is the supremum of <i>S</i> if and only if for every $\in > 0$ there exists an element S_{\in} in <i>S</i> such that $\alpha - \in < S_{\in}$.	7
2. (a)	State and prove squeez theorem for sequences. OR If $\{x_n\}$ is a Cauchy sequence of real numbers then prove that $\{x_n\}$ is convergent.	7
(b)	State and derive Nested interval theorem. OR Prove that a bounded sequence monotonic sequence increases.	7
3. (a)	Prove that if $\lim_{x \to a} f(x)$ exists; it is unique. OR If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M \neq 0$, then prove that $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$.	7 7
NC-102	If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M \neq 0$, then prove that $\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{M}$. 1 P.T	

(b) If function f is continuous at "a" and function g is continuous at "f(a)", then gof is continuous at "a".

OR

If function f is continuous at "a" and $\{x_n\}$ is a sequence converging to "a". Then prove that the sequence $\{f(x_n) \text{ is convergent to } f(a)$.

4. (a) State and prove mean value theorem. **OR**

State and derive Darboux's theorem.

(b) If function *f* is differentiable at "x", then prove that function *f* is continuous at "x" also. Does converse hold ? Justify your answer.7

OR

Suppose that function *f* is continuous and one-to-one on [a, b] and is differentiable with $f^{1}(x_{0}) \neq 0$. Then prove that f^{-1} is also differentiable at $y_{0} = f^{1}(x_{0})$ and

$$(f^{-1})^{\dagger}(y_0) = \frac{1}{(f^{\dagger}f^{-1}(y_0))}.$$

- 5. Answer the following in brief :
 - (a) In usual notations prove that $[0, 1] \sim (0, 1)$.
 - (b) Give an example of a bounded sequence which is neither a Cauchy sequence nor convergent.

(c) If
$$f(0) = f^{1}(0) = 1$$
, then evaluate $\lim_{x \to 0} \frac{f(x) - 1}{x}$.

- (d) Give an example of a continuous function which is not uniformly continuous.
- (e) State only L'Hospital's Rule.
- (f) Prove that every convergent sequence is Cauchy too.

(g) Evaluate :
$$\lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x}$$
.

NC-102

7

7

14

2