\qquad

NC-102

December-2015
B.Sc., Sem.-V

Core Course-302 : Mathematics

(Analysis - I)

Time : 3 Hours]

[Max. Marks : 70
Instructions: (1) All questions are compulsory.
(2) Figure to right indicate full marks of the questions/sub question.
(3) Notations used in this question paper carry their usual meaning.

1. (a) Prove that countable union of countable sets is again countable.

OR

Let $f: \mathrm{A} \rightarrow \mathrm{B}$ and let G and H be subsets of B . Show that $f^{-1}(\mathrm{G} \cap \mathrm{H})=f^{-1}(\mathrm{G}) \cap f^{-1}(\mathrm{H})$.
(b) State and prove (rational) density theorem.

Prove that an upper bound " α " of a non empty set S is the supremum of S if and only if for every $\in>0$ there exists an element S_{ϵ} in S such that $\alpha-\epsilon<S_{\epsilon}$.
2. (a) State and prove squeez theorem for sequences.

OR
If $\left\{x_{\mathrm{n}}\right\}$ is a Cauchy sequence of real numbers then prove that $\left\{x_{\mathrm{n}}\right\}$ is convergent.
(b) State and derive Nested interval theorem.

OR

Prove that a bounded sequence monotonic sequence increases.
3. (a) Prove that if $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)$ exists; it is unique.

OR
If $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)=\mathrm{L}$ and $\lim _{x \rightarrow \mathrm{a}} \mathrm{g}(x)=\mathrm{M} \neq 0$, then prove that $\lim _{x \rightarrow \mathrm{a}} \frac{\mathrm{f}(x)}{\mathrm{g}(x)}=\frac{\mathrm{L}}{\mathrm{M}}$.
(b) If function f is continuous at " a " and function g is continuous at " $f(\mathrm{a})$ ", then gof is continuous at "a".

If function f is continuous at "a" and $\left\{x_{\mathrm{n}}\right\}$ is a sequence converging to " a ". Then prove that the sequence $\left\{f\left(x_{\mathrm{n}}\right)\right.$ is convergent to $f(\mathrm{a})$.
4. (a) State and prove mean value theorem.

OR
State and derive Darboux's theorem.
(b) If function f is differentiable at " x ", then prove that function f is continuous at " x " also. Does converse hold ? Justify your answer.

OR

Suppose that function f is continuous and one-to-one on $[\mathrm{a}, \mathrm{b}]$ and is differentiable with $f^{1}\left(x_{0}\right) \neq 0$. Then prove that f^{-1} is also differentiable at $\mathrm{y}_{0}=f^{1}\left(x_{0}\right)$ and $\left(\mathrm{f}^{-1}\right)^{\prime}\left(\mathrm{y}_{0}\right)=\frac{1}{\left(\mathrm{f}^{\mathrm{I}} \mathrm{f}^{-1}\left(\mathrm{y}_{0}\right)\right)}$.
5. Answer the following in brief :
(a) In usual notations prove that $[0,1] \sim(0,1)$.
(b) Give an example of a bounded sequence which is neither a Cauchy sequence nor convergent.
(c) If $f(0)=f^{1}(0)=1$, then evaluate $\lim _{x \rightarrow 0} \frac{\mathrm{f}(x)-1}{x}$.
(d) Give an example of a continuous function which is not uniformly continuous.
(e) State only L'Hospital's Rule.
(f) Prove that every convergent sequence is Cauchy too.
(g) Evaluate : $\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-\mathrm{e}}{x}$.

