	Seat No. :		
		NB-103 December-2015	
		B.Sc., SemV	
		Core Course- 301 : Microbiology (Molecular Genetics of Prokaryotes)	
Houi	:s]	[Max. Marks: 7	70
ns:	(1)	All questions carry equal marks.	
	(2)	Draw diagrams wherever necessary.	
		llowing: (any two) nolecular mechanism of DNA replication.	14
-		n detail the Watson and Crick model of DNA.	
Hov		es Hershy and Chase experiment prove that DNA is genetic material in	
Diff	erent	iate between:	
(1)	RN	JA and DNA	
(2)	Zyg	gote and Merozygote	
(3)	Intr	ron and Exon	
ver t	he fol	llowing: (any two)	14
Exp	lain r	role of σ (sigma) factor in initiation of transcription.	
Exp	lain <i>la</i>	ac operon as an example of negative inducible control.	
Des	cribe	the process of elongation of translation.	
Wha	at is g	genetic code? Explain degeneracy and wobble nature of genetic code.	

2. Answer the following: (any **two**)

Instructions: (1) **All** questions carry equal marks.

Answer the following: (any **two**)

Time: 3 Hours

(b)

(c)

(d)

1.

- Explain role of σ (sigma) factor in initiation of
- (b) Explain *lac* operon as an example of negative
- Describe the process of elongation of translation (c)

(d) What is genetic code? Explain degeneracy and

3. Answer the following: (any **two**) 14

- Explain acradine orange and U.V. radiation as mutagenic agent. (a)
- Replica plate technique and its significance. (b)
- Describe various types of mutations and their significance. (c)
- Explain the mechanism of SOS repair in prokaryotes. (d)

NB-103 P.T.O. 1

4.	Answer the following: (any two)		
	(a)	Differentiate generalized transduction and specialized transduction.	
	(b)	What is competence? Explain mechanism of transformation in Gram negative bacteria.	
	(c)	Explain various types of plasmids and their role in prokaryotic gene expression.	
	(d)	What are transposons? Explain mechanism of transposition in prokaryotes.	
5.	Ans	wer in one or two lines :	14
	(a)	Name nitrogenous bases found in DNA molecule.	
	(b)	What is a cistron?	
	(c)	Mention function of DNA gyrase.	
	(d)	What is TATA box ? Mention its importance.	
	(e)	Mention function of rho-protein.	
	(f)	What is an operon ?	
	(g)	Draw central Dogma of genetic information.	
	(h)	Name key enzyme responsible for photoreactivation.	
	(i)	Write application of Ame's test.	
	(j)	What is an APsite ?	
	(k)	Name one biological mutagen.	
	(1)	F plasmid is an episome. what do you mean by it?	
	(m)	What is F ⁺ , F ⁻ and HFr?	
	(n)	What do you mean by Horizontal Gene transfer?	

NB-103 2