Seat No. : _____

NN-102 December-2015 B.Sc., Sem.-III **CC-202 : Electronics**

Tim	e: 31	[Max. Marks	[Max. Marks : 70		
Instructions : (1) All question				All questions carry equal marks.	
			(2)	Symbols have their usual meanings.	
			(3)	Figures to the right indicate marks.	
1.	(a)	Disc	uss th	e function of reactance L-section for impedance transformation. Deriv	'e
		the e	quatio	on for value of L-section reactance for $R > R_g$.	7
				OR	
		Writ	e a no	te on : Transformation of impedances with tapped resonant circuits.	
	(b)	Disc	uss a 1	wo-mesh coupled circuit used for impedance transformation.	7
				OR	
		Expl	ain re	actance T-networks for impedance transformation in detail.	
2.	(a)	Disc	uss th	e response of a low pass RC circuit to a pulse input.	7
				OR	
		Obta	in the	relation between neper and decibel.	
	(b)	Expl	ain ho	w a high pass RC circuit behaves as differentiator.	7
				OR	
		Disc	uss th	e current and voltage ratio as exponentials in filters	
3.	(a)	Expl	ain Ha	alf-adder and Full-adder with the help of Truth Table.	7
				OR	
		Expl	ain ho	w 555 timer can be used as a monostable multivibrator.	
	(b)	Usin	g full-	adders show how to add or subtract binary numbers.	7
				OR	
		Expl	ain ho	w 555 timer can be used as astable multivibrator.	
NN-102				1 P.	Т.О.

Time : 3 Hours]

4. (a) Explain Large Computers, Medium-Size Computers & Microcomputers in detail. 7

OR

Explain Machine language, assembly language & high-level language.

(b) Explain 8085 hardware and programming model in detail.

7

OR

Explain data transfer, arithmetic, logical, branching & machine control operations.

5. Answer in short :

14

- 1. Define coefficient of coupling.
- 2. Draw the equivalent T-Network for ideal transformer.
- 3. What is resonance ?
- 4. Draw low pass RC circuit.
- 5. Draw differentiating circuit.
- 6. 1 neper = $____ db$
- 7. Define filters.
- 8. Draw half adder circuit.
- 9. What is an ALU ?
- 10. Define duty cycle.
- 11. List flags of 8085.
- 12. What is system bus ?
- 13. Define opcode and operand.
- 14. Define operating system.