\qquad

NG2-119

December-2015

FY M.Sc., (CA \& IT)

Fundamental of Computer Organization

Time : 3 Hours]
[Max. Marks : 100

1. (a) Do as Directed :
(1) $(1001.1001)_{2}=-10$
(2) $(2 \mathrm{AB})_{16}=-\quad 8$
(3) $(56231.96)_{10}=$ \qquad
(4) Add the binary number 10111,0111 and 1101 .
(5) Subtract $101001-1010$
(6) Multiply 1011.01 by 101.01
(7) Subtract $101010-111100$ (using 2's complement method)
(b) Explain floating point representation. Represent the number (-17$)_{10}$ as floating point Binary Number with 32 bits.
2. (a) Reduce the Boolean Simplification :
(1) $\mathrm{AB}+\mathrm{A}\left(\mathrm{CD}+\mathrm{CD}^{\prime}\right)$
(2) $\mathrm{F}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}+\mathrm{X}^{\prime} \mathrm{YZ}{ }^{\prime}+X Y^{\prime} Z^{\prime}+X Y Z{ }^{\prime}$
(3) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(3,5,6,11,13,15)$
(4) $\mathrm{A}+\mathrm{BC}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})$
(b) Answer the following :
(1) What is Gate ? Explain Universal gate with example.
(2) State and prove the De Morgan's theorem using truth table and logical diagram.
(3) Draw EX-OR Gate with the help of only NAND Gate.
3. Write short notes: (any four)
(1) Construction of ALU
(2) Decimal to BCD Encoder
(3) Integrated Circuit
(4) The 4 to 1-line Multiplexer
(5) Binary Adder-Sub-tractor
4. Answer the following :
(1) Explain Address, Data and Control Bus.
(2) How many types of Scanner? Explain any one.
(3) Define Memory Hierarchy. Explain ROM.
(4) Explain DMA controller.
5. (a) State the differences :
(1) Combinational circuits and Sequential circuits
(2) Asynchronous counter and Synchronous counter
(3) A Half Adder and A Full Adder
(b) Minimize the following expression :
(1) Reduce the expression $f=\Sigma \mathrm{m}(1,5,6,12,13,14)+\mathrm{d}(2,4)$ and implement the expression in universal logic.
(2) Reduce the expression $\mathrm{f}=\pi \mathrm{M}(2,8,9,10,11,12,14)$ and implement the real minimal expression in universal logic.
