Seat No. : _____

NB-142

December-2015

F.Y.M.Sc. (CA & IT)

Mathematical Concepts

Time : 3 Hours]

1. Attempt any **four :**

- (1) Find a point on X-axis that is equidistant from A(2, 3) and B(1, 5).
- (2) Find the incentre of the triangle with vertices (3, 0), (0, 4) and (3, 4).
- (3) Measure of the angle between two lines is $\pi/4$ and one of the lines has slope 1/3. Find the slope of the other line.
- (4) Find the points of trisection of the line segment joining (4, 5) and (13, -4).
- (5) Find the equation of the line inclined at an angle of measure $\pi/4$ with X-axis and passing through (1, 2).
- 2. Attempt any **four :**
 - (1) Express the following as a product :
 - (i) $\sin 2\theta + \sin 4\theta$
 - (ii) $\sin 2\theta \sin 4\theta$
 - (2) Find the range of $\cos \theta + \sin(\theta \frac{\pi}{6})$
 - (3) Solve the equation $\cos \theta + \sin \theta = 1$
 - (4) Prove that $\sin\left(\frac{\pi}{4} + \theta\right)\sin\left(\frac{\pi}{4} \theta\right) = \frac{1}{2}\cos 2\theta$
 - (5) If A + B + C = π , prove that $\cos 2A + \cos 2B + \cos 2C = -1 - 4 \cos A \cos B \cos C$.

3. Attempt any **five :**

(1) Find $\frac{d}{dx} e^x \sec x \csc x$

(2) Find
$$\frac{d}{dx} \frac{\log x}{x^2}$$

NB-142

1

P.T.O.

20

[Max. Marks: 100

20

20

(3) Find
$$\frac{d}{dx} \cos(\sin(3x^2 + 2x + 1))$$

(4) Find $\frac{d}{dx} x^x$
(5) Find $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^3 - x}$
(6) Find $\lim_{x \to 0} \frac{2x + \sin 3x}{x + \tan 5x}$

4. Attempt any **four :**

(1) Find
$$\int (2t-1)\sqrt{t^2-t+5} \, dt$$

(2) Find
$$\int \frac{\mathrm{d}x}{5+4\cos x}$$

(3) Find
$$\int x \cos 2x \, dx$$

(4) Find $\int \sin^4 x \cos^3 x \, dx$

(5) Find
$$\int \frac{\mathrm{d}x}{(x-1)(x+2)}$$

5. Attempt any **four :**

(1) Find the Mc Laurin's series for
$$\sin x$$
.

(2) Find
$$\int_{1}^{2} x \log x \, \mathrm{d}x.$$

(3) Solve the following differential equation

$$xy(y+1) dy = (x^2 + 1) dx$$

(4) Verify whether
$$y = \cos^{-1}x$$
 is a solution of $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$

(5) Find the area bounded by the curve $y = x^2$ and the line y = 4.

NB-142

20

20