\qquad

NB-142

December-2015

F.Y.M.Sc. (CA \& IT)

Mathematical Concepts

Time : 3 Hours]

[Max. Marks : 100

1. Attempt any four :

(1) Find a point on X -axis that is equidistant from $\mathrm{A}(2,3)$ and $\mathrm{B}(1,5)$.
(2) Find the incentre of the triangle with vertices $(3,0),(0,4)$ and $(3,4)$.
(3) Measure of the angle between two lines is $\pi / 4$ and one of the lines has slope $1 / 3$. Find the slope of the other line.
(4) Find the points of trisection of the line segment joining $(4,5)$ and $(13,-4)$.
(5) Find the equation of the line inclined at an angle of measure $\pi / 4$ with X -axis and passing through (1, 2).
2. Attempt any four :
(1) Express the following as a product :
(i) $\sin 2 \theta+\sin 4 \theta$
(ii) $\sin 2 \theta-\sin 4 \theta$
(2) Find the range of $\cos \theta+\sin \left(\theta-\frac{\pi}{6}\right)$
(3) Solve the equation $\cos \theta+\sin \theta=1$
(4) Prove that $\sin \left(\frac{\pi}{4}+\theta\right) \sin \left(\frac{\pi}{4}-\theta\right)=\frac{1}{2} \cos 2 \theta$
(5) If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, prove that

$$
\cos 2 A+\cos 2 B+\cos 2 C=-1-4 \cos A \cos B \cos C .
$$

3. Attempt any five :
(1) Find $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^{x} \sec x \operatorname{cosec} x$
(2) Find $\frac{\mathrm{d}}{\mathrm{d} x} \frac{\log x}{x^{2}}$
(3) Find $\frac{\mathrm{d}}{\mathrm{d} x} \cos \left(\sin \left(3 x^{2}+2 x+1\right)\right)$
(4) Find $\frac{\mathrm{d}}{\mathrm{d} x} x^{x}$
(5) Find $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{3}-x}$
(6) Find $\lim _{x \rightarrow 0} \frac{2 x+\sin 3 x}{x+\tan 5 x}$
4. Attempt any four :
(1) Find $\int(2 t-1) \sqrt{t^{2}-t+5} d t$
(2) Find $\int \frac{d x}{5+4 \cos x}$
(3) Find $\int x \cos 2 x d x$
(4) Find $\int \sin ^{4} x \cos ^{3} x d x$
(5) Find $\int \frac{\mathrm{d} x}{(x-1)(x+2)}$
5. Attempt any four :
(1) Find the Mc Laurin's series for $\sin x$.
(2) Find $\int_{1}^{2} x \log x d x$.
(3) Solve the following differential equation

$$
x y(y+1) \mathrm{dy}=\left(x^{2}+1\right) \mathrm{d} x
$$

(4) Verify whether $y=\cos ^{-1} x$ is a solution of $\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{d x^{2}}-x \frac{\mathrm{dy}}{\mathrm{d} x}=0$
(5) Find the area bounded by the curve $\mathrm{y}=x^{2}$ and the line $\mathrm{y}=4$.

