Seat No. : _____

ND-144

December-2015 T.Y.M.B.A. Integrated Quantitative Techniques

Time : 3 Hours]

[Max. Marks: 100

20

10

10

5

5

Instructions : (1) Graph papers and statistical tables shall be provided on demand.

- (2) Non-programmable scientific calculators are allowed.
- (3) Answer the questions neatly in sequence.

1. Attempt any **two** :

- (a) Describe the following sampling plans :
 - (i) Systematic Sampling
 - (ii) Quota Sampling
- (b) A population consists of five elements : 2, 3, 4, 6 and 10. Draw all possible samples of size 2 when sampling is done without replacement. Examine whether the sample mean and sample variance are unbiased for the corresponding parameters. What is the sampling variance of mean ?
- (c) (i) Suppose that in an attempt to target its clientele, managers of a supermarket chain want to determine the difference between the proportion of morning shoppers who are men and the proportion of after 5 p.m. Shoppers who are men. Over a period of two weeks the chain's researchers conduct a systematic random sample survey of 400 morning shoppers, which reveals that 352 are women and 48 are men. During this same period, a systematic random sample of 480 after 5 p.m. Shoppers reveals that 293 are women and 187 are men. Construct a 98% confidence interval to estimate the difference in the population proportions of men.
 - (ii) Suppose a researcher wants to estimate the average monthly expenditure on bread by a family in Delhi. She wants to be 90% confident of her results. Suppose she wants the estimate to be within ₹ 1.50 of the actual figure and the standard deviation of average monthly bread purchases is ₹ 4.00. What is the sample size estimation for this problem ?

2. Attempt any **two** :

- A sample of 80 steel wires produced by factory A yields a mean breaking (a) strength of 1240 pounds with a standard deviation of 120 pounds. Another sample of 100 steel wires produced by factory B, on the other hand, yields a mean breaking strength of 1180 pounds, with a standard deviation of 105 pounds. Can it be concluded that the mean breaking strength of wires produced by factory A is greater than that of factory B ? Test at $\alpha = 0.01$.
- In a hypothetical study consumers are asked to rate a company both before and (b) after viewing a video on the company twice a day for a week. The data are displayed in the following table :

Individual	Before	After
1	32	39
2	11	15
3	21	35
4	17	13
5	30	41
6	38	39
7	14	22

Use the level of significance of 5% to test to determine whether there is a significant increase in the ratings of the company after the one-week video treatment.

(c) The first two samples consisting of 20 pairs of observations gives a correlation of 0.4 while another of 25 pairs has a correlation of 0.5. Are these two correlations significantly different ?

3. Attempt any **two** :

A sample analysis of examination results of 200 MBAs was made. It was found (a) that 46 students had failed, 68 secured a third division, 62 secured a second division and the rest were placed in the first division. Are these figures commensurate with general examination result which is in the ratio of 2:3:3:2for various categories respectively. Test at 1% level of significance.

20

10

20

10

10

10

ND-144

Two researchers adopted different sampling techniques while investigating the (b) same group of students to find the number of students falling in different intelligence levels. The results are as follows :

Researcher	Below Average	Average	Above Average	Genius
Х	86	60	44	10
Y	40	33	25	2

No. of students in each level

Would you say that the sampling techniques adopted by the two researchers are significantly different ? Test at 5% level of significance.

Previous experience shows the variance of a given process to be 16. Researchers (c) are testing to determine whether this value has changed. They gather the following dozen measurements of the process. Use these data and $\alpha = 0.05$ to test the null hypothesis about the variance. Assume the measurements are normally distributed.

51	45	50	59	47	49
37	48	49	43	54	52

The following data represent the number of units of production per day turned out by 4. 5 different workers using 4 different types of machines. 20

Machine Type				
Workers	А	В	С	D
1	44	38	47	36
2	46	40	52	43
3	34	36	44	32
4	43	38	46	33
5	38	42	49	39

Machine Type

(a) Test whether the mean productivity is the same for the different machine types.

Test whether the 5 men differ with respect to the mean productivity. (b)

5.	Atte	mpt a	ny two :	20
	(a)	(i)	What are chance and assignable causes of variability ?	5
		(ii)	What information is provided by the operating characteristic curve of a control chart ?	5
ND-1	44		3 P.1	ſ .O.

10

10

(b) A manufacturer produces gauges to measure oil pressure. As part of the company's statistical process control, 25 gauges are randomly selected and tested for non-conformances. The results are shown in the table. Use these data to construct a C-chart that displays the non-conformances per item.

10

5

5

Item Number	Number of Non- conformances		
1	2		
2	0		
3	3		
4	1		
5	2		
6	5		
7	3		
8	2		
9	0		
10	0		
11	4		
12	3		
13	2		
14	2		
15	1		
16	4		
17	0		
18	2		
19	3		
20	2		
21	1		
22	3		
23	2		
24	0		
25	3		

(c) (i) Define : AOQL and LTPD.

(ii) For N = 10,000, n = 89, c = 2 and p = 0.01. Compute AOQ and ATI.

ND-144

4