Seat No.:	
-----------	--

5

ND-148

December-2015

S.Y. M.Sc., (CA & IT)

Data Structures

Time: 3 Hours] [Max. Marks: 100 Write an algorithm for PUSH operation of stack. 1. 6 9 (b) Convert the following expressions from infix to postfix: A * (B + C - D / E) / F(i) (ii) P * Q + (R - S / T)(iii) ((A + B) / D) - ((E - F) * GWrite an algorithm for evaluating a postfix expression. 5 2. Consider the following simple queue where 6 memory cells are allocated: 5 (a) Rear = 5Front = 3Queue : _, _, <u>P</u>, Q, <u>R</u>, _ Describe the queue including front and rear as the following operations takes place: Z is added (1) (2) Delete (3) Delete (4) Delete (5) A is added Write an algorithm for the following: (any **three**) **15** (b) (1) Insert a node after a given location LOC is simple linked list. (2) Check whether an element is present in circular liked list or not.

3. (a) Create a binary tree from the given traversals :

(3)

(4)

Inorder: Y T Z S P Q U R V W X
Preorder: Q P S T Y Z R U V W X

ND-148 1 P.T.O.

Count the total number of nodes having value greater than 50.

Delete a given location LOC in two ways linked list.

		(1)	AVL Tree	
		(2)	Leaf Node	
		(3)	Indegree of a node	
		(4)	Complete Binary Tree	
		(5)	Similar Trees	
		(6)	Binary Search Trees	
	(c)	Write	e an algorithm for searching a given item of information in binary search tree.	5
4.	(a)) Find adjacency and path matrix for the following graph:		
			E B A E C	
	(b)	Defi	ne the following with respect to graph:	10
		(1)	Simple path	
		(2)	Endpoints	
		(3)	Connected graph	
		(4)	Loops	
		(5)	Complete graph	
	(c)	Expl	ain minimum spanning tree and Kruskal's algorithm.	4
5.	(a)	Answer any four :		20
		(1)	Perform bubble sort for the following numbers:	
			65, 87, 12, 90, 33, 58, 15, 72, 44	
		(2)	Write an algorithm for insertion sort.	
		(3)	Sort the following numbers using radix sort :	
			561, 789, 235, 874, 512, 370, 261, 629, 416, 147	
		(4)	Write an algorithm for merge sort.	
		(5)	Write an algorithm for sequential search.	
ND	-148		2	

10

(b) Define the following with respect to tree : (any 5)