\qquad

ND-148

December-2015

S.Y. M.Sc., (CA \& IT)

Data Structures

Time : 3 Hours]
[Max. Marks : 100

1. (a) Write an algorithm for PUSH operation of stack.
(b) Convert the following expressions from infix to postfix :
(i) $\mathrm{A} *(\mathrm{~B}+\mathrm{C}-\mathrm{D} / \mathrm{E}) / \mathrm{F}$
(ii) $\mathrm{P} * \mathrm{Q}+(\mathrm{R}-\mathrm{S} / \mathrm{T})$
(iii) $\quad((\mathrm{A}+\mathrm{B}) / \mathrm{D})-((\mathrm{E}-\mathrm{F}) * \mathrm{G}$
(c) Write an algorithm for evaluating a postfix expression.
2. (a) Consider the following simple queue where 6 memory cells are allocated :

Front $=3 \quad$ Rear $=5$
Queue : _, _, $\underline{P}, \mathbf{Q}, \underline{R}$,
Describe the queue including front and rear as the following operations takes place :
(1) Z is added
(2) Delete
(3) Delete
(4) Delete
(5) A is added
(b) Write an algorithm for the following : (any three)
(1) Insert a node after a given location LOC is simple linked list.
(2) Check whether an element is present in circular liked list or not.
(3) Delete a given location LOC in two ways linked list.
(4) Count the total number of nodes having value greater than 50 .
3. (a) Create a binary tree from the given traversals :

Inorder : Y T Z S P Q U R V W X
Preorder : Q P S T Y Z R U V W X
ND-148
P.T.O.
(b) Define the following with respect to tree: (any 5)
(1) AVL Tree
(2) Leaf Node
(3) Indegree of a node
(4) Complete Binary Tree
(5) Similar Trees
(6) Binary Search Trees
(c) Write an algorithm for searching a given item of information in binary search tree.
4. (a) Find adjacency and path matrix for the following graph :

(b) Define the following with respect to graph :
(1) Simple path
(2) Endpoints
(3) Connected graph
(4) Loops
(5) Complete graph
(c) Explain minimum spanning tree and Kruskal's algorithm.
5. (a) Answer any four :
(1) Perform bubble sort for the following numbers :

$$
65,87,12,90,33,58,15,72,44
$$

(2) Write an algorithm for insertion sort.
(3) Sort the following numbers using radix sort : $561,789,235,874,512,370,261,629,416,147$
(4) Write an algorithm for merge sort.
(5) Write an algorithm for sequential search.

