Seat No. : _____

NB-143

December-2015

S.Y. M.Sc. (CA & IT)

Discrete Mathematics

Time : 3 Hours]

[Max. Marks: 100

- 1. Attempt any **four :**
 - (1) Construct a truth table for the proposition $(q \land p) \rightarrow (p \land r)$.
 - (2) Show the following equivalence :

 $\sim (p \leftrightarrow q) \equiv (p \lor q) \land \sim (p \land q)$

- (3) Obtain the PCNF of $(p \rightarrow q) \rightarrow r$.
- (4) Show that $r \land (p \lor q)$ is a valid conclusion from the premises

 $p \lor q, q \rightarrow r, p \rightarrow m \text{ and } \sim m.$

(5) Show that $\{\sim, \land\}$ is a functionally complete set.

2. Attempt all :

- (1) Find the domain, range and inverse of the relation $R = \{(a, b)/a \text{ divides } b\}$ defined on $A = \{1, 2, 3, 4, 5, 6\}$
- (2) Let $R = \{(1, 2), (2, 3), (2, 2), (3, 2), (2, 1), (1, 1), (2, 4), (3, 4), (4, 1)\}$ be a relation on a set $X = \{1, 2, 3, 4\}$. Draw the graph and find the matrix of R.
- (3) Let $A = \{1, 3, 5, 7\}$ and $B = \{2, 3, 4, 5\}$. Find the following

(i) $A \cup B$, (ii) $A \cap B$, (iii) A - B and (iv) B - A.

- (4) Define :
 - (i) Statement function.
 - (ii) Free variable
 - (iii) Bound variable
 - (iv) Scope of quantifier
 - (v) Universe of discourse

P.T.O.

20

20

- 3. Attempt all :
 - (1) Let A = $\{1, 2, 3, 4\}$ and R = $\{(1, 1), (1, 2), (2, 3), (3, 2), (4, 3), (3, 4)\}$. Find the transitive closure of R.
 - (2) Define a lattice. Express the poset ({2, 3, 6, 12}, /) with the help of a Hasse diagram. Is this poset a lattice ? Explain.
 - (3) Define complement of an element in a lattice and a complemented lattice. Find complements of every element of the lattice $(D_{75}, 1)$.

 $(D_{75} = set of all factors of 75)$

(4) Find the greatest, least, minimal and maximal elements of the poset.

Also find the upper bounds, lower bounds, glb and lub of the sets.

- (i) $\{g, f\}$ and (ii) $\{d, e, f\}$
- 4. Attempt **all** :
 - (1) Simplify the Boolean Expressions :
 - (i) $(a * b)' \oplus (a \oplus b)'$
 - (ii) $(a * c) \oplus c \oplus [(b \oplus b') \oplus c]$
 - (2) Obtain the product of sums canonical form in three variables x_1 , x_2 and x_3 of the expression $x_1 * x_2$.
 - (3) Show that in a Boolean Algebra, $a < b \Leftrightarrow a' \oplus b = 1 \Leftrightarrow a * b' = 0$
 - (4) Find the value of the Boolean Expression $(x_1 * x_2 * x_3) \oplus (x_1' * x_2 * x_3) \oplus (x_1 * x_2' * x_3) \oplus (x_1' * x_2' * x_3')$ for the Boolean Algebra.

for $x_1 = a$, $x_2 = b$, $x_3 = 1$

NB-143

20

20

5. Attempt any **four :**

- (1) Show that the set of all integers \mathbb{Z} forms an abelian group with respect to the operation * defined as a $*b = a + b + 1 \quad \forall a, b \in \mathbb{Z}$.
- (2) If $a^2 = e$ for all $a \in G$ in a group (G, *), then prove that G is abelian.
- (3) Define a cyclic group. Is $(\mathbb{Z}, +)$ a cyclic group ? Explain.
- (4) If (G, *) is a group and a, b, c are elements of G, then, prove that
 - (i) $a * b = a * c \Rightarrow b = c$
 - (ii) $b * a = c * a \Longrightarrow b = c$.
- (5) (i) Investigate whether the following permutation is odd or even :

$$F = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 1 & 8 & 5 & 6 & 2 & 4 \end{pmatrix}$$

(ii) If $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 5 & 4 & 6 & 2 \end{pmatrix}$, find g^2 and g^{-1} .

NB-143

NB-143