Seat No. : _____

NS-124

December-2015

M.Sc., Sem.-I

403 : Statistics (Estimation Theory)

Time : 3 Hours]

[Max. Marks : 70

Instruction : All questions carry equal marks.

1. (a) Define minimal sufficient statistic. State & prove Lehmann-Scheffe theorem on minimal sufficient statistic. Show that for Cauchy distribution with location parameter θ , no nontrivial minimal sufficient statistics exist.

OR

Define complete sufficient statistic. Discuss complete sufficient statistic in exponential family of distributions. Hence deduce complete sufficient statistic for (μ, σ^2) in case of normal distribution N(u., σ^2) based on a random sample of size n.

(b) Let $X_1, X_2, ..., X_n$ be a random sample from negative binomial distribution with parameters 1 and p, 0 . Obtain minimal sufficient statistics for p. Check the completeness property of the statistic obtained by you.

OR

Let X_1 and X_2 be iid with discrete uniform distribution given by P(X=x) = 1/N, $x = 1, 2, ..., N, N \ge 1$. Obtain minimal sufficient statistic for N. Check whether the statistic obtained is complete.

 (a) State and prove Cramer-Rao inequality for the variance of unbiased estimator. Hence deduce it for MSE of biased estimator.

OR

State and prove Rao-Blackwell theorem. Let $X_1, X_2, ..., X_n$ be a random sample from Poisson distribution with mean $\lambda, \lambda > 0$. Obtain UMVUE for $e^{-\lambda}(1 + \lambda)$.

NS-124

(b) State and prove necessary and sufficient condition for unbiased estimator T for $g(\theta)$ to have a minimum variance at the value $\theta = \theta_0$. Hence deduce that the correlation coefficient between MVUE and any unbiased estimator is non-negative.

OR

Let $X_1, X_2, ..., X_n$ be a random sample from uniform distribution $U(\alpha, \beta), \alpha < \beta$. Obtain UMVUE for α, β and $\beta - \alpha$.

3. (a) Prove or disprove: MLE is consistent. Check the property in case of normal distribution with mean μ , and variance 1 based on a random sample of size n.

OR

Let $X_1, X_2, ..., X_n$ be a random sample from the distribution given below. Obtain MLE of α . What do you conclude from your answer ?

$$f(x; \alpha, \beta) = \begin{cases} \frac{2x}{\alpha \theta}, & 0 \le x \le \theta\\ \frac{2(\alpha - x)}{\alpha(\alpha - \theta)}, & \theta \le x \le \alpha \end{cases}$$

(b) Show that MLE is asymptotically normally distributed statistic. Let $X_1, X_2, ..., X_n$ be a random sample from exponential distribution with mean $\theta > 0$. Obtain mle of θ . Obtain its asymptotic distribution.

OR

Let $X_1, X_2, ..., X_n$ be a random sample from the exponential distribution with location parameter μ and scale parameter θ . Obtain MLE of the parameters. Hence obtain MLE of $\mu + 3\theta, \theta > 0$.

4. (a) What is $(1 - \alpha)100\%$ confidence interval estimation ? State its interpretation. How it differs from the point estimation ? Discuss with illustration.

OR

Discuss pivotal method of obtaining confidence interval with illustration.

(b) Let $X_1, X_2, ..., X_n$ be a random sample from the exponential distribution with mean $1/\theta, \theta > 0$. Construct 95% confidence interval for θ . Obtain expected length of the confidence interval.

OR

Discuss a general method of obtaining confidence interval with illustration.

NS-124

- 5. Suggest correct single answer in the following :
 - (i) If T be any sufficient statistic for parameter θ then
 - $L(x, \theta) = \underline{\qquad}.$ (a) $g(t, \theta)h(x)$ (b) $g(\theta)h(t, x)$ (c) $g(t)h(x, \theta)$ (d) none of these
 - (ii) Let $X_1, X_2, ..., X_n$ be a random sample from U(0, θ), $\theta > 0$ distribution. And $T = X_{(n)}$. Then UMVUE of θ^2 is
 - (a) $\frac{3T^2}{n}$ (b) $\frac{n+2}{n}T^2$

(c)
$$\frac{n}{n+2}T^2$$
 (d) $\frac{n}{n+1}T^2$

(iii) Let $X_1, X_2, ..., X_n$ be a random sample from the pdf $f(x; \theta) = (\pi [1 + (x - \theta)^2])^{-1}, -\infty < x < \infty$. Define $T_1 = X_{(n)} - X_{(1)}$ and $T_2 = X_{(n)} + X_{(1)}$. Then

- (a) T_1 is ancillary and T_2 is not a sufficient for θ
- (b) T_2 is ancillary and T_1 is sufficient for θ
- (c) T_1 is minimal sufficient and T_2 is complete statistic for θ
- (d) T_1 and T_2 both are sufficient statistic for θ
- (iv) Let $X_1, X_2, ..., X_n$ be a random sample from N(θ, θ) normal distribution and

$$S = \sum_{i=1}^{N} (x_i - \bar{x})^2$$
. Then S is unbiased estimator of

- (a) $n\theta$ (b) $n\theta^2$
- (c) $(n-1)\theta$ (d) $(n-1)\theta^2$
- (v) Let $X_1, X_2, ..., X_n$ be a random sample from the pdf $f(x; \theta) = \theta^2 x e^{-\theta x^2}$, x > 0. An unbiased estimator of θ is

(a)
$$\frac{X_1 + X_2 + X_3}{3}$$
 (b) $\frac{1}{3} \left(\frac{1}{X_1} + \frac{1}{X_2} + \frac{1}{X_3} \right)$
(c) $\left(\frac{X_1 + X_2 + X_3}{3} \right)^{-1}$ (d) $3 \left(\frac{1}{X_1} + \frac{1}{X_2} + \frac{1}{X_3} \right)^{-1}$

NS-124

P.T.O.

- (vi) If T is an unbiased and sufficient for θ then LogT for Log θ is
 - (a) unbiased and sufficient both
 - (b) unbiased only
 - (c) Neither unbiased nor sufficient
 - (d) sufficient only
- (vii) Let $X_1, X_2, ..., X_n$ be a random sample from U(0, θ), $\theta > 0$ uniform distribution Let $T = \overline{2}\overline{X}$ be an estimator of θ . Then mean square error of T is
 - (a) $\theta^2/12$ (b) $\theta^2/3$
 - (c) $\theta^2/12n$ (d) $\theta^2/3n$
- (viii) Say True or False : MLE is always better than any other estimator.
- (ix) Let $X_1, X_2, ..., X_n$ be a random sample from the U(0, θ), $\theta > 0$ uniform distribution. State the UMVUE of log θ .
- (x) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$ distribution, μ and σ^2 both are unknown. Which one is not a statistic ? Here $S^2 = \sum_{i=1}^n (x_{(i)} \bar{x})^2$.

(a)
$$\sum_{i=1}^{n} (x_i - \mu)^2$$
 (b) $\sum_{i=1}^{n} (x_i - \bar{x})^2 / n$
(c) $\sum_{i=1}^{n} (x_i - S)^2 / n$ (d) \bar{x} / S^2

- (xi) Define Fisher information contained in statistic.
- (xii) Define ancillary statistic.
- (xiii) State Basu's theorem.
- (xiv) Give an example of non unique MLE.