\qquad
NS-123
December-2015
M.Sc., Sem.-I

403 : Mathematics
(Complex Analysis-I)
Time : 3 Hours]
[Max. Marks : 70

1. (a) What do the equations $|\mathrm{z}-\mathrm{i}|=\mathrm{z}+\mathrm{il}$ and $|\mathrm{z}-\mathrm{i}|+|\mathrm{z}+\mathrm{i}|=2$ represent? Justify your answers.

OR

How are the $\mathrm{n}^{\text {th }}$ roots of a complex number $\mathrm{z}_{0}=\mathrm{r}_{0} \mathrm{e}^{\mathrm{i} \theta_{0}}$ given ? Find all the sixth roots of 8 , exhibit them all graphically. Also find fourth roots of -1 and sketch them.
(b) Answer any two of the following briefly:
(i) Write $(-1+\mathrm{i})^{7}$ in the rectangular form $x+$ iy.
(ii) When do you say that point z_{1} is closer to the origin than point z_{2} ? Which of the points $3-2 \mathrm{i}$ and $1+4 \mathrm{i}$ is closer to origin ? Justify.
(iii) Show that \mid Rezl $+|I m z| \leq \sqrt{2}|z|$.
(c) Answer all of the following very briefly :
(i) Sketch the set $|\mathrm{z}-2+\mathrm{i}|=\sqrt{3}$. Is it a domain?
(ii) Sketch the set $|2 z+3|>4$ and determine if it is a domain.
(iii) Find $\operatorname{Arg}(-1-i)$
2. (a) Suppose $f(z)=\left\{\begin{array}{cc}\frac{\bar{z}^{2}}{z} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{array}\right.$

Show that Cauchy-Riemann equations are satisfied at origin. Does $f^{\prime}(0)$ exist ? Justify.

Suppose D is a domain and $f: D \rightarrow \mathbb{C}$ satisfies $f^{\prime}(z)=0$ for all $z \in D$. Show that $f(z)$ is constant on D. By giving an appropriate example show that the condition that D is a domain can not be dropped.
(b) Answer any two of the following briefly:
(i) Discuss differentiability of $f(z)=e^{x} e^{-i y}$.
(ii) At which points z of the complex plane \mathbb{C} is the function $\mathrm{f}(\mathrm{z})=|\mathrm{z}|^{2}$ differentiable? Is it analytic anywhere?
(iii) Show that $\lim _{\mathrm{z} \rightarrow \infty} \mathrm{f}(\mathrm{z})=\infty \operatorname{iff}_{\mathrm{z} \rightarrow 0} \lim _{\mathrm{f}} \frac{1}{\left(\frac{1}{\mathrm{z}}\right)}=0$. Using this show that $\lim _{\mathrm{z} \rightarrow \infty} \frac{2 \mathrm{z}^{3}-1}{\mathrm{z}^{2}+1}=\infty$.
(c) Answer all of the following very briefly :
(i) Give one proper subset of \mathbb{C} which is a neighbourhood of ∞.
(ii) When do you say that f is analytic at z_{0} ? What do you mean by an entire function?
(iii) If $\mathrm{f}(\mathrm{z})=x^{2}+\mathrm{iy}^{2}$, show that $\mathrm{f}^{\prime}(x+\mathrm{i} x)=2 x$. Is f analytic anywhere ?
3. (a) When do you say that v is a Harmonic Conjugate of u ? Show that $\mathrm{f}(\mathrm{z})=\mathrm{u}(x, \mathrm{y})+\mathrm{iv}(x, \mathrm{y})$ is analytic in a domain D if and only if v is a Harmonic Conjugate of u . Also show that if v and V are Harmonic Conjugates of u then they differ by a constant.

OR

How is $\log (\mathrm{z})$ defined on $\mathrm{D}=\mathbb{C}-\{0\}$. Discuss the points where it is discontinuous. Justify your claims.
(b) Answer any two of the following briefly:
(i) Define $\sin ^{-1} \mathrm{z}$ giving proper motivation.
(ii) Show that $\sin ^{-1}(-\mathrm{i})=\mathrm{n} \pi+\mathrm{i}(-1)^{\mathrm{n}+1} \ln (1+\sqrt{2}), \mathrm{n} \in \mathbb{Z}$.
(iii) What is the image of the y-axis under the map $f(z)=\exp (z)=e^{z}$?
(c) Answer all of the following very briefly :
(i) Find the principal value of i^{i}.
(ii) Find the value of $\log (-$ ei).
(iii) Show that $\left|\exp \left(z^{2}\right)\right| \leq \exp \left(|z|^{2}\right)$.
4. (a) Suppose that f is continuous on a domain D. Show that f has antiderivative F in D if the contour integrals of $f(z)$ around closed contours lying entirely in D all have value zero.

OR

Suppose f is analytic on and within closed region R consisting of all points interior to and on a simple closed contour C and f^{\prime} is continuous there. Show that
$\int f(z) d z=0$
C
(b) Answer any two of the following briefly:
(i) Find the value of : $\int_{i}^{i / 2} e^{\pi z} d z$.
(ii) Assuming $\int_{0}^{\pi} \mathrm{e}^{(1+\mathrm{i}) x} \mathrm{~d} x=\int_{0}^{\pi} \mathrm{e}^{x} \cos x \mathrm{~d} x+i \int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x$

Evaluate the two integrals on right by evaluating single integral on the left and then comparing the real and imaginary parts.
(iii) Find the integrals $\int_{C} \frac{1}{Z} d z$ and $\int_{C} \bar{z} d z$ where C is the right-hand half $\mathrm{z}=2 \mathrm{e}^{\mathrm{i} \theta}\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right)$ of the circle $|\mathrm{z}|=2$ from $\mathrm{z}=-2 \mathrm{i}$ to $\mathrm{z}=2 \mathrm{i}$.
(c) Answer all of the following very briefly :
(i) What is meant by a simple closed contour? Explain giving example.
(ii) Giving the meanings of all the notations, establish

$$
\left|\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}\right| \leq \mathrm{ML}
$$

(iii) Find the value of $\int_{|z|=1} e^{\sin z^{3}} d z$.
5. (a) Stating appropriate assumptions, derive Cauchy Integral Formula.

OR

Stating appropriate assumptions, derive the main part of the proof of the Extension of Cauchy Integral Formula.
(b) Answer any two of the following briefly:
(i) Find the value of $\int_{C} \frac{\cosh (z)}{z^{4}} d z$, where C is the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $\mathrm{y}= \pm 2$.
(ii) Find $\int_{|z|=1} \frac{\cos z}{z\left(z^{2}+8\right)} d z$
(iii) Find the value of $\int_{|z-i|=2} \frac{1}{z^{2}+4} d z$.
(c) Answer all of the following very briefly :
(i) State Morera's Theorem.
(ii) Define a Multiply Connected Domain giving an example.
(iii) Find the value of $\int \frac{\mathrm{z}}{2 \mathrm{z}+1} \mathrm{dz}$.

$$
|z|=\frac{1}{4}
$$

