Seat No. : $\qquad$
NS-122
December-2015
M.Sc., Sem.-I

403 : Chemistry
(Physical Chemistry)
Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) Attempt all questions.
(2) Necessary constants :

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{A}}=6.02213 \times 10^{23} \mathrm{~mol}^{-1} \\
& \mathrm{k}_{\mathrm{B}}=1.3806 \times 10^{-16} \mathrm{erg} \mathrm{~K}^{-1}=1.3806 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& \mathrm{~h}=6.6260 \times 10^{-27} \mathrm{erg} \mathrm{~s}=6.6260 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& \mathrm{c}=2.998 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \mathrm{R}=8.3145 \times 10^{7} \mathrm{erg} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

1. (a) Explain the term chemical potential and show that

$$
\begin{gathered}
\left(\delta \mathrm{G} / \delta n_{\mathrm{i}}\right)_{\mathrm{P}, \mathrm{~T}, \mathrm{n}}=\left(\delta \mathrm{A} / \delta n_{\mathrm{i}}\right)_{\mathrm{V}, \mathrm{~T}, \mathrm{n}}=\left(\delta \mathrm{H} / \delta n_{\mathrm{i}}\right)_{\mathrm{P}, \mathrm{~S}, \mathrm{n}}=\left(\delta \mathrm{U} / \delta \mathrm{n}_{\mathrm{i}}\right)_{\mathrm{V}, \mathrm{~S}, \mathrm{n}} \\
\text { OR }
\end{gathered}
$$

Discuss the Nernst's heat theorem and derive an equation giving the relation between free energy, enthalpy and heat capacity.
(b) (i) What are partial molar properties ? Show how partial molar volume can be determined by density measurements.
(ii) A solution of ethyl alcohol in water has a density of 0.8494 , the mole fraction of water being 0.6 . If the partial molar volume of alcohol in the solution is 57.5 CC . Calculate that of water. $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} 46 \mathrm{~g} / \mathrm{mol}\right)$

## OR

(b) (i) How fugacity of real gases can be evaluated graphically? 4
(ii) Explain the effect of temperature and pressure on partial molar free energy.
2. (a) Discuss activated complex theory of bimolecular reactions.

OR
Explain the mechanism and kinetics of chain reaction between hydrogen and bromine.
(b) Discuss Lindemann theory of unimoleculer reactions.

OR
(b) (i) Write a note on branched chain reaction.
(ii) If the activation energy of a reaction is $80.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the fraction of molecules at $400^{\circ} \mathrm{C}$ which have enough energy to form products.
3. (a) On which basis the solids are classified as metals, semi-conductors and insulator ? Discuss the mechanism of electrical conductivity in each of the cases.

## OR

What are Frenkel defects? Derive an expression for number of Frenkel defects in a crystal.
(b) Explain bond theory of metals.

OR
(b) (i) Write note on : Non stoichiomeiric defects.
(ii) Estimate the mole fractions of Schottky in NaCl crystal at 1000 K . The energy for formation of this defects is $2 \mathrm{eV} .\left(1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} \mathrm{~K}^{-1}\right)$
4. (a) What is micelles ? Explain critical miceller concentration.

OR
Discuss the BET and the Harkins and Jura method of determining the surface area of adsorbents.
(b) Derive Gibb's adsorption isotherm equation and explain surface activity from this equation.

## OR

(i) Write a note on surface tension and detergents.
(ii) For a $1.0 \times 10^{-10} \mathrm{M}$ aqueous solution of n -butanoic acid $\mathrm{d} \gamma / \mathrm{dc}=-0.080 \mathrm{~N}$ $\mathrm{m}^{2} \mathrm{~mol}^{-1}$, at $25{ }^{\circ} \mathrm{C}$. Using the Gibbs adsorption equation, determine the surface excess of the acid and also calculate the average surface area available to each molecule.
5. Answer the following : (one mark each)
(i) Why solids with F centre are paramagnetic?
(ii) Why the rate constant very with temperature?
(iii) Name the properties of solids.
(iv) Name different types of atomic imperfection in solids.
(v) For real gases activity is proportional to it's $\qquad$ .
(vi) The ratio f/p approaches $\qquad$ when p (the actual pressure) approaches $\qquad$ .
(vii) When Ea of a reaction is zero, the reaction rate becomes independent of $\qquad$ .
(viii) Why rate of reaction always increases with temperature whether the reaction is exothermic or endothermic?
(ix) What is chain length?
(x) What is adsorption isostere?
(xi) Adsorption of gases on solid surface is generally exothermic because $\qquad$ decreases.
(xii) What is enthalpy of adsorption?
(xiii) What types of attraction forces are present between adsorbent and adsorbate in physisorption?
(xiv) Why is the value of $\Delta \mathrm{G}$ at m pt. of ice zero ?

