Seat No. :_____

NS-122

December-2015

M.Sc., Sem.-I

403 : Chemistry (Physical Chemistry)

Time : 3 Hours]

[Max. Marks : 70

- **Instructions** : (1) Attempt **all** questions.
 - (2) Necessary constants : $N_A = 6.02213 \times 10^{23} \text{ mol}^{-1}$ $k_B = 1.3806 \times 10^{-16} \text{ erg K}^{-1} = 1.3806 \times 10^{-23} \text{ J K}^{-1}$ $h = 6.6260 \times 10^{-27} \text{ erg s} = 6.6260 \times 10^{-34} \text{ J s}$ $c = 2.998 \times 10^{10} \text{ cm s}^{-1} = 2.998 \times 10^8 \text{ m s}^{-1}$ $R = 8.3145 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1} = 8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$

	(a)	Expl	ain the term chemical potential and show that		
		(δG/	$(\delta n_i)_{P,T,n} = (\delta A/\delta n_i)_{V,T,n} = (\delta H/\delta n_i)_{P,S,n} = (\delta U/\delta n_i)_{V,S,n}$		
OR					
Discuss the Nernst's heat theorem and derive an equation between free energy, enthalpy and heat capacity.			uss the Nernst's heat theorem and derive an equation giving the relation veen free energy, enthalpy and heat capacity.		
	(b)	(i)	What are partial molar properties ? Show how partial molar volume can be determined by density measurements.		
		(ii)	A solution of ethyl alcohol in water has a density of 0.8494, the mole fraction of water being 0.6. If the partial molar volume of alcohol in the solution is 57.5 CC. Calculate that of water. (C_2H_5OH 46 g/mol)		
			OR		
	(b)	(i)	How fugacity of real gases can be evaluated graphically ?		
		(ii)	Explain the effect of temperature and pressure on partial molar free energy.		

NS-122

1.

7

4

3

4

3

2.	(a)	Discuss activated complex theory of bimolecular reactions.	7
		OR	
		Explain the mechanism and kinetics of chain reaction between hydrogen and bromine.	
	(b)	Discuss Lindemann theory of unimoleculer reactions.	7
		OR	
	(b)	(i) Write a note on branched chain reaction.	4
		(ii) If the activation energy of a reaction is 80.9 kJ mol ^{-1} , calculate the fraction of molecules at 400 °C which have enough energy to form products.	3
3.	(a)	On which basis the solids are classified as metals, semi-conductors and insulator ? Discuss the mechanism of electrical conductivity in each of the cases.	7
		OR	
		What are Frenkel defects ? Derive an expression for number of Frenkel defects in a crystal.	
	(b)	Explain bond theory of metals.	7
		OR	
	(b)	(i) Write note on : Non stoichiomeiric defects.	4
		(ii) Estimate the mole fractions of Schottky in NaCl crystal at 1000 K. The energy for formation of this defects is 2 eV. $(1 \text{ eV} = 1.602 \times 10^{-19} \text{ J K}^{-1})$	3
4.	(a)	What is micelles ? Explain critical miceller concentration.	7
	(u)	OR	
		Discuss the BET and the Harkins and Jura method of determining the surface area of adsorbents.	
	(b)	Derive Gibb's adsorption isotherm equation and explain surface activity from this equation.	7
		OR	
		(i) Write a note on surface tension and detergents.	4
		(ii) For a 1.0×10^{-10} M aqueous solution of n-butanoic acid dy/dc = -0.080 N	
		m^2 mol ⁻¹ , at 25 °C. Using the Gibbs adsorption equation, determine the surface excess of the acid and also calculate the average surface area available to each molecule.	3
NC	100		J

NS-122

- 5. Answer the following : (**one** mark each)
 - (i) Why solids with F centre are paramagnetic ?
 - (ii) Why the rate constant very with temperature ?
 - (iii) Name the properties of solids.
 - (iv) Name different types of atomic imperfection in solids.
 - (v) For real gases activity is proportional to it's _____.
 - (vi) The ratio f/p approaches _____ when p (the actual pressure) approaches _____.
 - (vii) When Ea of a reaction is zero, the reaction rate becomes independent of _____.
 - (viii) Why rate of reaction always increases with temperature whether the reaction is exothermic or endothermic ?
 - (ix) What is chain length ?
 - (x) What is adsorption isostere ?

 - (xii) What is enthalpy of adsorption ?
 - (xiii) What types of attraction forces are present between adsorbent and adsorbate in physisorption ?
 - (xiv) Why is the value of ΔG at m pt. of ice zero ?

NS-122