Seat No. : \qquad

NQ-128

December-2015
M.Sc., Sem.-I

402 : Mathematics

(Metric Spaces)

Time : 3 Hours]

[Max. Marks : 70

1. (a) Define an open ball in a metric space (X, d). Define an open set in the metric space (X, d). Show that if U and V are two open subsets of X , then $\mathrm{U} \cap \mathrm{V}$ is also open.

OR

Define an open ball in a metric space (X, d).
Consider $\mathrm{C}[0,1]$ with the metric given by the sup norm, i.e. for $\mathrm{f}, \mathrm{g} \in \mathrm{C}[0,1]$, $\mathrm{d}(\mathrm{f}, \mathrm{g})=\sup \{|\mathrm{f}(x)-\mathrm{g}(x)|: x \in[0,1]\}$.

Let $\mathrm{f}(x)=x^{2}$ and $\mathrm{g}(x)=x$. Does f belong to the ball $\mathrm{B}\left(\mathrm{g}, \frac{1}{3}\right)$?
(b) Answer any two :
(i) Find two open sets U, V in \mathbb{R}^{3} such that $(1,2,3) \in U,(2,3,4) \in V$ and $\mathrm{U} \cap \mathrm{V}=\phi$.
(ii) Give an example of an unbounded closed subset of \mathbb{R}^{2} which does not contain the point $(0,1)$.
(iii) Show that the interval $(3,8)$ in \mathbb{R} is an open ball.
(c) Answer all :
(i) State (without proof) the Hausdorff property.
(ii) Let $\left(\mathrm{Y}_{1}, \mathrm{~d}_{1}\right)$ and $\left(\mathrm{Y}_{2}, \mathrm{~d}_{2}\right)$ be metric spaces. Define (without proof) the product metric on $\mathrm{Y}_{1} \times \mathrm{Y}_{2}$.
(iii) Let X be a nonempty set. List the properties that a function $\mathrm{d}: \mathrm{X} \times \mathrm{X} \longrightarrow \mathbb{R}$ must satisfy for d to be a metric on X .
2. (a) Let (X, d) be a metric space.

Let $\left(x_{\mathrm{n}}\right)$ be a sequence in X .
Define : $\left(x_{\mathrm{n}}\right)$ converges to $x \in \mathrm{X}$. In \mathbb{R}^{2}, consider the sequence whose $\mathrm{n}^{\text {th }}$ term is $\left(1+\frac{1}{\mathrm{n}}, 2-\frac{1}{\mathrm{n}}\right)$. Find (giving details) the limit of this sequence.

OR

Let X be a metric space. Let E be a subset of X .
Define : $x \in \mathrm{X}$ is a limit point of E .
Show that if E is closed, it contains all its limit points.
(b) Answer any two :
(i) State (without proof) the Bolzano Weierstrass Theorem.
(ii) Consider the set $\operatorname{SL}(2, \mathbb{R})$ of all 2×2 real matrices with determinant 1 . Is this set a bounded subset of $\mathrm{M}(2, \mathbb{R})$?
(iii) Give an example of an open subset U of \mathbb{R}, such that U is dense in \mathbb{R} and $\mathrm{U} \neq \mathbb{R}$.
(c) Answer all :
(i) Define : $\left(x_{\mathrm{n}}\right)$ is a Cauchy sequence in (X, d).
(ii) State (without proof) the Weierstrass Approximation theorem.
(iii) Find a number in the interval $\left(1, \frac{3}{2}\right)$, of the form $n+m \sqrt{2}$, where $n, m \in \mathbb{Z}$.
3. (a) Let $\left(\mathrm{X}, \mathrm{d}_{1}\right)$ and $\left(\mathrm{Y}, \mathrm{d}_{2}\right)$ be metric spaces.

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function.
Define : f is continuous at $x \in \mathrm{X}$. Define : f is continuous on X .
Suppose f is continuous at $x \in \mathrm{X}$.
Show that given $\Sigma>0$, there exists a $\delta>0$, such that if $\mathrm{d}_{1}(x, y)<\delta$ then $\mathrm{d}_{2}(\mathrm{f}(x)$,
$\mathrm{f}(\mathrm{y}))<\Sigma$.

OR

Let $\left(\mathrm{X}, \mathrm{d}_{1}\right)$ and $\left(\mathrm{Y}, \mathrm{d}_{2}\right)$ be metric spaces.
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function.
Define : f is continuous at $x \in \mathrm{X}$. Define $: \mathrm{f}$ is continuous on X .
Suppose $f: X \rightarrow Y$ is continuous. Let V be a closed subset in Y. Show that $f^{-1}(V)$ is closed.
(b) Answer any two :
(i) Let $\mathrm{A}=\left\{(x, \mathrm{y}) \in \mathbb{R}^{2}: x \mathrm{y}=1\right\}$

Let $\mathrm{B}=\left\{(x, \mathrm{y}) \in \mathbb{R}^{2}: x \mathrm{y}=0\right\}$
Find d(A, B).
(ii) State (without proof) Urysohn's Lemma.
(iii) Show that any two closed and bounded intervals in \mathbb{R} are homeomorphic.
(c) Answer all :
(i) Give an example of a continuous function from \mathbb{R}^{2} to \mathbb{R} which takes at least 2 different values. (i.e. the function is not constant). (Do not prove).
(ii) Give an example of a continuous function from S^{1} to S^{\prime} which takes at least 2 different values. (Do not prove). (Here $\left.S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}\right)$.
(iii) Give an example (without proof) of a function from \mathbb{R} to \mathbb{R} which is not continuous at 0 .
4. (a) Let X be a metric space and let A be a subset of X .

Define : an open cover of A . Let K be a subset of X .
Define : K is compact. State (without proof) the Heine-Borel Theorem for \mathbb{R}^{n}.
Show that any closed subset of a compact set, in a metric space X , is compact.

OR

Let X be a metric space and let A be a subset of X .
Define : an open cover of A . Let K be a subset of X .
Define : K is compact. Show that the continuous image of a compact metric space is compact.
(b) Answer any two :
(i) Show that a circle in \mathbb{R}^{2} is not homeomorphic to a parabola.
(ii) Let $\mathrm{A}=\left\{(x, \mathrm{y}, \mathrm{z}) \in \mathbb{R}^{3}: x^{2}+\mathrm{y}^{2}-\mathrm{z}^{2}=1\right\}$. Is A compact ?
(iii) Let $\mathrm{A}=\left\{(x, \mathrm{y}) \in \mathbb{R}^{2}:|x| \leq 1,|\mathrm{y}| \leq 1\right\}$. Consider the function $\mathrm{f}(x, \mathrm{y})=x^{2}+\mathrm{y}^{2}$. Find the maximum value of f on A .
(c) Answer all :
(i) Give an example of a function $f:(0,1) \rightarrow \mathbb{R}$, such that f is continuous but not bounded. (Do not prove).
(ii) Give a sequence $\left(x_{\mathrm{n}}\right)$ in \mathbb{R} which has no convergent subsequence. (Do not prove).
(iii) Let $\mathrm{A}=\left\{(x, \mathrm{y}) \in \mathbb{R}^{2}: x^{2}+\mathrm{y}^{2}=1\right\}$

Let $\mathrm{B}=\left\{(x, \mathrm{y}) \in \mathbb{R}^{2}: x^{2}+\mathrm{y}^{2}=4\right\}$
Find d(A, B). (Do not prove).
5. (a) Define : A metric space X is path connected. Show that $\mathbb{R}^{2}\{(0,0)\}$ is path connected.

OR

Define : A metric space X is connected.
Suppose X is connected and $\mathrm{f}: \mathrm{X} \rightarrow\{-1,1\}$ is a continuous function.
Show that f is a constant function. Describe (without proof) the connected subsets of \mathbb{R}.
(b) Answer any two :
(i) Give a path from $(1,0,0)$ to $(0,1,0)$ on S^{2}. $\left(S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}\right)$
(ii) Show that \mathbb{R} is not homeomorphic to \mathbb{R}^{2}.
(iii) Let $\mathrm{f}(x)=x^{2}-3 x+3$, and let $\mathrm{I}=[0,2]$. Find $\mathrm{f}(\mathrm{I})$, the image of I under f .
(c) Answer all :
(i) State the Intermediate Value Theorem.
(ii) Show that the polynomial $x^{3}+x+3$ has a real root.
(iii) Give an example of a polynomial with real coefficients, of degree at least one, which has no real root.

