Seat No. : _____

[Max. Marks: 70

NQ-128

December-2015 M.Sc., Sem.-I 402 : Mathematics (Metric Spaces)

Time: 3 Hours]

(a) Define an open ball in a metric space (X, d). Define an open set in the metric space (X, d). Show that if U and V are two open subsets of X, then U ∩ V is also open.

OR

Define an open ball in a metric space (X, d).

Consider C[0, 1] with the metric given by the sup norm, i.e. for f, $g \in C[0, 1]$,

 $d(f, g) = \sup \{ |f(x) - g(x)| : x \in [0, 1] \}.$

Let $f(x) = x^2$ and g(x) = x. Does f belong to the ball $B\left(g, \frac{1}{3}\right)$?

- (b) Answer any **two** :
 - (i) Find two open sets U, V in \mathbb{R}^3 such that $(1, 2, 3) \in U$, $(2, 3, 4) \in V$ and $U \cap V = \phi$.
 - (ii) Give an example of an unbounded closed subset of \mathbb{R}^2 which does not contain the point (0, 1).
 - (iii) Show that the interval (3, 8) in \mathbb{R} is an open ball.

- (i) State (without proof) the Hausdorff property.
- (ii) Let (Y_1, d_1) and (Y_2, d_2) be metric spaces. Define (without proof) the product metric on $Y_1 \times Y_2$.
- (iii) Let X be a nonempty set. List the properties that a function $d : X \times X \longrightarrow \mathbb{R}$ must satisfy for d to be a metric on X.

1

NQ-128

Р.Т.О.

4

7

⁽c) Answer **all** :

2. (a) Let (X, d) be a metric space.

Let (x_n) be a sequence in X.

Define : (x_n) converges to $x \in X$. In \mathbb{R}^2 , consider the sequence whose nth term is $\left(1 + \frac{1}{n}, 2 - \frac{1}{n}\right)$. Find (giving details) the limit of this sequence.

OR

Let X be a metric space. Let E be a subset of X.

Define : $x \in X$ is a limit point of E.

Show that if E is closed, it contains all its limit points.

- (b) Answer any **two** :
 - (i) State (without proof) the Bolzano Weierstrass Theorem.
 - (ii) Consider the set SL (2, ℝ) of all 2 × 2 real matrices with determinant 1. Is this set a bounded subset of M (2, ℝ) ?
 - (iii) Give an example of an open subset U of \mathbb{R} , such that U is dense in \mathbb{R} and $U \neq \mathbb{R}$.
- (c) Answer **all** :
 - (i) Define : (x_n) is a Cauchy sequence in (X, d).
 - (ii) State (without proof) the Weierstrass Approximation theorem.
 - (iii) Find a number in the interval $\left(1, \frac{3}{2}\right)$, of the form $n + m\sqrt{2}$, where $n, m \in \mathbb{Z}$.
- 3. (a) Let (X, d_1) and (Y, d_2) be metric spaces.

Let $f: X \to Y$ be a function.

Define : f is continuous at $x \in X$. Define : f is continuous on X.

Suppose f is continuous at $x \in X$.

Show that given $\Sigma > 0$, there exists a $\delta > 0$, such that if $d_1(x, y) < \delta$ then $d_2(f(x), \phi)$

 $f(y)) < \Sigma.$

OR

Let (X, d_1) and (Y, d_2) be metric spaces.

Let $f: X \to Y$ be a function.

Define : f is continuous at $x \in X$. Define : f is continuous on X.

Suppose $f: X \to Y$ is continuous. Let V be a closed subset in Y. Show that $f^{-1}(V)$ is closed.

- (b) Answer any **two** :
 - (i) Let A = $\{(x, y) \in \mathbb{R}^2 : xy = 1\}$ Let B = $\{(x, y) \in \mathbb{R}^2 : xy = 0\}$ Find d(A, B).
 - (ii) State (without proof) Urysohn's Lemma.
 - (iii) Show that any two closed and bounded intervals in \mathbb{R} are homeomorphic.

4

7

7

4

- (c) Answer all :
 - (i) Give an example of a continuous function from \mathbb{R}^2 to \mathbb{R} which takes at least 2 different values. (i.e. the function is not constant). (Do not prove).
 - (ii) Give an example of a continuous function from S¹ to S' which takes at least 2 different values. (Do not prove). (Here S¹ = {(x, y) $\in \mathbb{R}^2 : x^2 + y^2 = 1$ }).
 - (iii) Give an example (without proof) of a function from R to R which is not continuous at 0.
- 4. (a) Let X be a metric space and let A be a subset of X.

Define : an open cover of A. Let K be a subset of X.

Define : K is compact. State (without proof) the Heine-Borel Theorem for \mathbb{R}^n . Show that any closed subset of a compact set, in a metric space X, is compact.

OR

Let X be a metric space and let A be a subset of X.

Define : an open cover of A. Let K be a subset of X.

Define : K is compact. Show that the continuous image of a compact metric space is compact.

- (b) Answer any **two** :
 - (i) Show that a circle in \mathbb{R}^2 is not homeomorphic to a parabola.
 - (ii) Let A = { $(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1$ }. Is A compact ?
 - (iii) Let A = { $(x, y) \in \mathbb{R}^2$: $|x| \le 1$, $|y| \le 1$ }. Consider the function $f(x, y) = x^2 + y^2$. Find the maximum value of f on A.
- (c) Answer **all** :
 - (i) Give an example of a function f: (0, 1) → ℝ, such that f is continuous but not bounded. (Do not prove).
 - (ii) Give a sequence (x_n) in \mathbb{R} which has no convergent subsequence. (Do not prove).

(iii) Let A = { $(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1$ } Let B = { $(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 4$ } Find d(A, B). (Do not prove).

NQ-128

P.T.O.

4

3

(a) Define : A metric space X is path connected. Show that ℝ² {(0, 0)} is path connected.

OR

Define : A metric space X is connected.

Suppose X is connected and $f: X \rightarrow \{-1, 1\}$ is a continuous function.

Show that f is a constant function. Describe (without proof) the connected subsets of \mathbb{R} .

- (b) Answer any **two** :
 - (i) Give a path from (1, 0, 0) to (0, 1, 0) on S². (S² = {(x, y, z) $\in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1$ })
 - (ii) Show that \mathbb{R} is not homeomorphic to \mathbb{R}^2 .

(iii) Let $f(x) = x^2 - 3x + 3$, and let I = [0, 2]. Find f(I), the image of I under f.

(c) Answer all :

- (i) State the Intermediate Value Theorem.
- (ii) Show that the polynomial $x^3 + x + 3$ has a real root.
- (iii) Give an example of a polynomial with real coefficients, of degree at least one, which has no real root.

NQ-128

3