\qquad

(Quantum Mechanics-1 \& Mathematical Physics)

Time : 3 Hours]
[Max. Marks : 70

1. (a) Find out minimum energy of He -atom using variation method.

OR

Explain : variation method. Show that $\left(\mathrm{W}-\mathrm{E}_{0}\right) \leq\left[\left\langle\mathrm{H}^{2}\right\rangle_{\psi}-\mathrm{W}^{2}\right]^{1 / 2}$.
(b) Discuss Stark effect for the first excited state of hydrogen atom. Obtain eigen values and eigen vectors. Explain how degeneracy is not completely removed.
Given : $\left|\mathrm{U}_{200}\right\rangle=\left[\frac{1}{32 \pi \mathrm{a}^{3}}\right]^{1 / 2}\left[2-\frac{\mathrm{r}}{\mathrm{a}}\right] \exp \left(-\frac{\mathrm{r}}{2 \mathrm{a}}\right)$ and

$$
\left|\mathrm{U}_{210}\right\rangle=\left[\frac{1}{32 \pi \mathrm{a}^{3}}\right]^{1 / 2}\left[\frac{\mathrm{r}}{\mathrm{a}}\right] \exp \left(-\frac{\mathrm{r}}{2 \mathrm{a}}\right) \cos \theta .
$$

OR
Set-up Hamiltonian for Hydrogen molecule. Solving Schrodinger equation, obtain energies of symmetric and anti-symmetric states.
2. (a) What is propagator ? Write differential equation for propagator and obtain propagator for free particle.

OR

Obtain Bohr-Sommerfeld quantization condition and find energy of simple harmonic oscillator.
(b) Discuss sudden approximation and obtain expression for transition probability.

OR

Obtain solution of the time dependent Schrodinger equation. What do you mean by retarded propagator? Obtain equation for propagator.
3. (a) Obtain Laplace transform of $\mathrm{f}(\mathrm{t})=\mathrm{t}^{\mathrm{n}} ; \mathrm{t}>0 ; \mathrm{n}>-1$

OR

Obtain Laplace transform of
(i) $\mathrm{f}(\mathrm{t})=\mathrm{t} \sin \mathrm{at} ; \mathrm{t}>0 ; \mathrm{a}=$ constant.
(ii) $\mathrm{f}(\mathrm{t})=\mathrm{t} \cos \mathrm{at} ; \mathrm{t}>0 ; \mathrm{a}=\mathrm{constant}$
(b) Describe the method of solving the differential equation by Laplace transform.

OR

A particle of mass 3 g moves on the x -axis and is attracted towards a fixed point with a force whose numerical value is 12 x . Assuming that the particle is initially at rest at $x=5$, determine the position of particle at any time t,
(i) when there is no other force.
(ii) when there is a damping force whose numerical value is 6 times the instantaneous velocity.
4. (a) Define a class and subgroup. Write four postulates of subgroup. Discuss two interesting results involving classes.

What do you understand by 'closer property of the group' ? Define left and right coset and discuss meaning of disjoint set.
(b) Show that:
(i) $\mathrm{A}_{\mathrm{ik}}+\mathrm{B}_{\text {ik }}=\mathrm{C}_{\mathrm{ik}}$
(ii) $\mathrm{A}_{\mathrm{ik}}-\mathrm{B}_{\mathrm{ik}}=\mathrm{D}_{\mathrm{ik}}$

Where $\mathrm{A}_{\mathrm{ik}}, \mathrm{B}_{\mathrm{ik}}, \mathrm{C}_{\mathrm{ik}}$ and D_{ik} are Tensors of same rank.

OR

Define a 'tensor' and show that,

$$
\mathrm{V}^{2}=\mathrm{V} . \mathrm{V}=\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{~g}_{\mathrm{ij}} \mathrm{~V}_{\mathrm{i}} \mathrm{~V}_{\mathrm{j}}
$$

5. Answer the following questions :
(1) Define Heaviside unit function.
(2) What is exchange integral?
(3) In WKB method expansion of wave function is in power series of \qquad .
(4) Show that $\Delta_{I, I I}=\Delta_{I I, I}$.
(5) Write normalized eigen-states for the energy $\mathrm{W}^{(1)}= \pm 3 \mathrm{eEa}$.
(6) If wave function for free particle is $\psi=\mathrm{e}^{-\alpha \mathrm{r}}$ with $\alpha=$ constant, find $\mathrm{w} \equiv\langle\mathrm{H}\rangle_{\psi}$.
(7) What will be perturbed Hamiltonian when Helium-atom is placed in the uniform electric field of intensity E ?
(8) If S_{ij} is a symmetric tensor and A_{ij} is an anti-symmetric tensor, what is product of $\mathrm{S}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{ij}}$?
(a) a tensor of mixed symmetry
(b) an anti-symmetric tensor
(c) a symmetric tensor
(d) zero
(9) If A^{μ} and B_{v} are components of contravariant and covariant tensors, what is the nature of the quantity $\mathrm{A}^{\mu} \mathrm{B}_{\mathrm{v}}$?
(a) zero
(b) an invariant
(c) a covariant
(d) a mixed tensor of rank 2
(10) What is 'quotient group'?
(11) Show that A (B.C) $=($ A.B) C
(12) Which one of the following statement is true for Laplace transformation?
(a) $L\left(y^{n}\right)=p^{n} L(y)-p^{n-1} y_{0}-p^{n-2} y_{0}^{\prime}-p^{n-3} y_{0}^{\prime \prime}-\ldots . .-y_{0}^{n-1}$
(b) $L\left(y^{n}\right)=p^{n} L(y)-p^{n-1} y_{0}-p^{n-2} y_{0}^{\prime}-p^{n-3} y_{0}^{\prime \prime}-\ldots . .-y_{0}^{n}$
(c) $\quad \mathrm{L}\left(\mathrm{y}^{\mathrm{n}}\right)=\mathrm{p}^{\mathrm{n}} \mathrm{L}(\mathrm{y})-\mathrm{p}^{\mathrm{n}-1} \mathrm{y}_{0}+\mathrm{p}^{\mathrm{n}-2} \mathrm{y}_{0}^{\prime}-\mathrm{p}^{\mathrm{n}-3} \mathrm{y}_{0}^{\prime \prime}+\ldots . .+\mathrm{y}_{0}^{\mathrm{n}-1}$
(d) $\quad L\left(y^{n}\right)=p^{n} L(y)-p^{n-1} y_{0}-p^{n-2} y_{0}^{\prime}-p^{n-3} y_{0}^{\prime \prime}-\ldots . .-y_{0}^{n+1}$
(13) $\mathrm{L}\left(\mathrm{e}^{-\mathrm{at}}\right)=$ \qquad $\operatorname{Re}(p+a)>0$.
(14) \qquad is a kernel for Fourier transform.
