\qquad

NO-112

December-2015
M.Sc., Sem.-I

401 : Mathematics

(Functions of Several Variables)

Time : 3 Hours]

[Max. Marks : 70
Instructions : (1) All questions are compulsory.
(2) Each question carries $\mathbf{1 4}$ marks.

1. (a) Attempt any one :
(1) Define real valued linear function on E^{n}. Prove that a real valued function L is linear if and only if there exists real numbers $a_{1}, a_{2}, a_{3}, \ldots ., a_{n}$ such that $\mathrm{L}(x)=\mathrm{a} \cdot x$ for all $x \in \mathrm{E}^{\mathrm{n}}$.
(2) Define convex set. Prove that a set K is convex if and only if every convex combination of points of K is a point of K.
(b) Attempt any two :
(1) Define hyperplane. Find the hyperplane in E^{4} containing the four points $0, e_{1}+e_{2}, e_{1}-e_{2}+2 e_{3}, 3 e_{4}-e_{2}$.
(2) Show that if x can be represented in two ways as a convex combination of $x_{0}, x_{1}, \ldots \ldots, x_{\mathrm{r}}$, then $x_{1}-x_{0}, x_{2}-x_{0}, \ldots \ldots, x_{\mathrm{r}}-x_{0}$ form a linearly dependent set.
(3) Prove that any linear function is continuous.
(c) Attempt all :
(1) Prove that any hyperplane is a closed set.
(2) Give two convex subsets of E^{3}.
(3) Explain the terms : Co-vector, dual of E^{n}.
2. (a) Attempt any one :

7
(1) Define relative extremum of f at x_{0}. If f has a relative extremum at x_{0} and f is differentiable at x_{0}, then prove that x_{0} is a critical point.
(2) Let f be differentiable on an open, connected domain D such that $\mathrm{df}(x)=0$ for all x in D . Prove that F is constant function on D .
(b) Attempt any two :
(1) If f is differentiable at x_{0} then prove that f has a derivative at x_{0} in every direction v.
(2) Find the directional derivative of $\mathrm{f}(x, \mathrm{y})=x \mathrm{e}^{x y}$ at $x_{0}=\mathrm{e}_{1}-\mathrm{e}_{2}$ in the direction $v=\frac{1}{\sqrt{2}}\left(e_{1}+e_{2}\right)$.
(3) Let $\mathrm{f}(x, \mathrm{y})=(x+\mathrm{y}+1)^{\mathrm{p}}$ on $\mathrm{K}=\{(x, \mathrm{y}) /(x+\mathrm{y}+1)>0\}$. Determine the values of p for which f is convex on K .
(c) Attempt all :
(1) Prove that $\mathrm{f}(x)=\mathrm{ax}+\mathrm{b}$ is a convex function on E .
(2) Define the functions of class $C^{(q)}$. Give an example of a $C^{(3)}$ function that is not $\mathrm{C}^{(4)}$.
(3) Is the function $\mathrm{f}(x, \mathrm{y})=|x y|$ a differentiable function? Justify.
3. (a) Attempt any one :
(1) Let D be an open subset of E^{n} and w a continuous 1-form with domain D , then prove that w is exact if and only if for every closed curve lying in D,
$\int w=0$.
r
(2) Define the length of a curve r . If f and g both represent r and f is equivalent to g, then prove that $\int_{a}^{b}\left|f^{\prime}(\tau)\right| d \tau=\int_{\alpha}^{\beta}\left|g^{\prime}(t)\right| d t$.
(b) Attempt any two :
(1) Let r be represented by $\mathrm{f}(x)=|x|^{3 / 2}$ on $[-\mathrm{b}, \mathrm{b}]$. Find the arc length of r .
(2) Evaluate $\frac{1}{2} \int_{\mathrm{r}} x \mathrm{dy}-\mathrm{yd} x$, if r is represented by $\mathrm{g}(\mathrm{t})=(\mathrm{a} \cos \mathrm{t}) \mathrm{e}_{1}+(\mathrm{b} \sin \mathrm{t}) \mathrm{e}_{2}$, $0 \leq \mathrm{t} \leq 2 \pi$, where $\mathrm{a}, \mathrm{b}>0$.
(3) Let D be an open, simply connected subset of E^{2} and u and v are functions of class $C^{(1)}$ which satisfy $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$, then show that for any closed curve lying in $D, \int_{r} u d x-v d y=0$ and $\int_{r} v d x+u d y=0$.
(c) Attempt all :
(1) Find the tangent line at $e_{1}+e_{2}+e_{3}$ to the curve represented by

$$
g(t)=t e_{1}+t^{1 / 2} e_{2}+t^{1 / 3} e_{3}, \frac{1}{2} \leq t \leq 2
$$

(2) When we say that a parametric representation f is equivalent to g ? explain.
(3) Prove that $\int w=-\int w$.

$$
-r \quad r
$$

4. (a) Attempt any one :
(1) Define affine transformation. Prove that $(r=n)$ a transformation g is isometry of E^{n} if and only if g is affine transformation of the form $\mathrm{g}(\mathrm{t})=\mathrm{L}(\mathrm{t})+x_{0}$ for all t in E_{n} and L is orthogonal.
(2) Let $r=3, \mathrm{n}=2$ and L be the linear transformation such that $\mathrm{L}\left(\varepsilon_{1}\right)=\mathrm{e}_{1}-2 \mathrm{e}_{2}$, $\mathrm{L}\left(\varepsilon_{2}\right)=\mathrm{e}_{1}, \mathrm{~L}\left(\varepsilon_{3}\right)=5 \mathrm{e}_{1}+\mathrm{e}_{2}$. Find the matrix of L , the rank, and the Kernel.
(b) Attempt any two :
(1) State inverse function theorem with a simple example.
(2) Define isometry of E^{n}. Give two isometries of E^{1}.
(3) Let $g(s, t)=\left(s^{2}-t^{2}\right) e_{1}+2 s t e_{2}(n=r=2)$. Find the matrix $\operatorname{Dg}(s, t)$ and Jacobian $\operatorname{Jg}(\mathrm{s}, \mathrm{t})$.
(c) Attempt all :
(1) If L is a linear transformation from E^{r} to E^{n}, prove that the range and the Kernell of L are linear subspaces.
(2) Let $g(s, t)=\left(s^{2}+t^{2}\right) e_{1}+2 s t e_{2}$ and $\Delta=E^{2}$. Draw the region $g(\Delta)$.
(3) Define univalent transformation. Is $g(s, t)=\left(s^{2}+t^{2}\right) e_{1}+(2 s t) e_{2}$ univalent? Justify.
5. (a) Attempt any one :
(1) State implicit function theorem with a simple illustration.
(2) Let $\phi(x, y, z)=x^{2}+4 y^{2}-2 y z-z^{2}$ and $x_{0}=2 \mathrm{e}_{1}+\mathrm{e}_{2}-4 \mathrm{e}_{3}$, verify whether the function satisfies the hypothesis of implicit function theorem.
(b) Attempt any two :
(1) Let ϕ be a function of class $\mathrm{C}^{(2)}$ such that $\phi(x, \mathrm{f}(x))=0$ and $\phi_{2}(x, \mathrm{f}(x)) \neq 0$ for every x in R. Find f^{\prime} and $\mathrm{f}^{\prime 2}$.
(2) Let $\phi(f(y, z), y, z)=0$ and $\phi_{1}(f(y, z), y, z) \neq 0$ for every (y, z) in R. Find f_{11}.
(3) Define manifold with a simple illustration.
(c) Attempt All :
(1) Prove that $(\mathrm{n}-1)$ sphere $\{x:|x|=1\}$ is an $(\mathrm{n}-1)$ manifold.
(2) Define the tangent vector to the manifold M at the point x_{0}.
(3) Define the normal vector to the manifold M at the point x_{0}.
