Seat No. : _____

NO-112

December-2015

M.Sc., Sem.-I

401 : Mathematics

(Functions of Several Variables)

Time : 3 Hours]

- **Instructions :** (1) All questions are compulsory.
 - (2) Each question carries **14** marks.
- 1. (a) Attempt any **one** :
 - (1) Define real valued linear function on E^n . Prove that a real valued function L is linear if and only if there exists real numbers $a_1, a_2, a_3, \ldots, a_n$ such that L(x) = a.x for all $x \in E^n$.
 - (2) Define convex set. Prove that a set K is convex if and only if every convex combination of points of K is a point of K.
 - (b) Attempt any **two** :
 - (1) Define hyperplane. Find the hyperplane in E^4 containing the four points 0, $e_1 + e_2$, $e_1 e_2 + 2e_3$, $3e_4 e_2$.
 - (2) Show that if x can be represented in two ways as a convex combination of x_0, x_1, \ldots, x_r , then $x_1 x_0, x_2 x_0, \ldots, x_r x_0$ form a linearly dependent set.
 - (3) Prove that any linear function is continuous.
 - (c) Attempt **all** :
 - (1) Prove that any hyperplane is a closed set.
 - (2) Give two convex subsets of E^3 .
 - (3) Explain the terms : Co-vector, dual of E^n .
- 2. (a) Attempt any **one** :
 - (1) Define relative extremum of f at x_0 . If f has a relative extremum at x_0 and f is differentiable at x_0 , then prove that x_0 is a critical point.
 - (2) Let f be differentiable on an open, connected domain D such that df(x) = 0 for all x in D. Prove that F is constant function on D.

1

NO-112

P.T.O.

4

7

3

[Max. Marks: 70

- (b) Attempt any **two** :
 - (1) If f is differentiable at x_0 then prove that f has a derivative at x_0 in every direction v.
 - (2) Find the directional derivative of $f(x, y) = xe^{xy}$ at $x_0 = e_1 e_2$ in the direction $v = \frac{1}{\sqrt{2}} (e_1 + e_2)$.
 - (3) Let $f(x, y) = (x + y + 1)^p$ on $K = \{(x, y) / (x + y + 1) > 0\}$. Determine the values of p for which f is convex on K.
- (c) Attempt all :
 - (1) Prove that f(x) = ax + b is a convex function on E.
 - (2) Define the functions of class $C^{(q)}$. Give an example of a $C^{(3)}$ function that is not $C^{(4)}$.
 - (3) Is the function f(x, y) = |xy| a differentiable function ? Justify.
- 3. (a) Attempt any **one** :
 - (1) Let D be an open subset of E^n and w a continuous 1-form with domain D, then prove that w is exact if and only if for every closed curve lying in D,

$$\int_{r} w = 0.$$

- (2) Define the length of a curve r. If f and g both represent r and f is equivalent to g, then prove that $\int_{\alpha} |f'(\tau)| d\tau = \int_{\alpha} |g'(t)| dt$.
- (b) Attempt any **two** :
 - (1) Let r be represented by $f(x) = |x|^{3/2}$ on [-b, b]. Find the arc length of r.

2

(2) Evaluate
$$\frac{1}{2} \int x dy - y dx$$
, if r is represented by $g(t) = (a \cos t) e_1 + (b \sin t) e_2$,
r
 $0 \le t \le 2\pi$, where a, b > 0.

NO-112

3

7

- (3) Let D be an open, simply connected subset of E² and u and v are functions of class C⁽¹⁾ which satisfy $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$, then show that for any closed curve lying in D, $\int_{r} u dx - v dy = 0$ and $\int_{r} v dx + u dy = 0$.
- (c) Attempt all :
 - (1) Find the tangent line at $e_1 + e_2 + e_3$ to the curve represented by

$$g(t) = t e_1 + t^{1/2} e_2 + t^{1/3} e_3, \frac{1}{2} \le t \le 2.$$

(2) When we say that a parametric representation f is equivalent to g ? explain.

(3) Prove that
$$\int w = -\int w$$
.
-r r

4. (a) Attempt any **one** :

- (1) Define affine transformation. Prove that (r = n) a transformation g is isometry of E^n if and only if g is affine transformation of the form $g(t) = L(t) + x_0$ for all t in E_n and L is orthogonal.
- (2) Let r = 3, n = 2 and L be the linear transformation such that $L(\varepsilon_1) = e_1 2e_2$, $L(\varepsilon_2) = e_1$, $L(\varepsilon_3) = 5e_1 + e_2$. Find the matrix of L, the rank, and the Kernel.
- (b) Attempt any **two** :
 - (1) State inverse function theorem with a simple example.
 - (2) Define isometry of E^n . Give two isometries of E^1 .
 - (3) Let $g(s, t) = (s^2 t^2) e_1 + 2st e_2$ (n = r = 2). Find the matrix Dg(s, t) and Jacobian Jg(s, t).
- (c) Attempt all :
 - (1) If L is a linear transformation from E^r to E^n , prove that the range and the Kernell of L are linear subspaces.
 - (2) Let $g(s, t) = (s^2 + t^2) e_1 + 2st e_2$ and $\Delta = E^2$. Draw the region $g(\Delta)$.

3

(3) Define univalent transformation. Is $g(s, t) = (s^2 + t^2) e_1 + (2st)e_2$ univalent ? Justify.

NO-112

P.T.O.

7

3

3

- 5. (a) Attempt any **one** :
 - (1) State implicit function theorem with a simple illustration.
 - (2) Let $\phi(x, y, z) = x^2 + 4y^2 2yz z^2$ and $x_0 = 2e_1 + e_2 4e_3$, verify whether the function satisfies the hypothesis of implicit function theorem.
 - (b) Attempt any **two** :
 - (1) Let ϕ be a function of class $C^{(2)}$ such that $\phi(x, f(x)) = 0$ and $\phi_2(x, f(x)) \neq 0$ for every x in R. Find f' and f".
 - (2) Let ϕ (f(y, z), y, z) = 0 and $\phi_1(f(y, z), y, z) \neq 0$ for every (y, z) in R. Find f₁₁.
 - (3) Define manifold with a simple illustration.
 - (c) Attempt All:
 - (1) Prove that (n-1) sphere $\{x : |x| = 1\}$ is an (n-1) manifold.
 - (2) Define the tangent vector to the manifold M at the point x_0 .
 - (3) Define the normal vector to the manifold M at the point x_0 .

3