Seat No. : _____

JB2-101

January-2016

M.Sc., Sem.-I

405 : Mathematics (Measure and Integration)

Time : 3 Hours]

[Max. Marks: 70

- 1. (a) Attempt any **one** :
 - (1) Prove that a subset E of [a, b] is measurable if and only if for given $\in > 0$ there exist open sets G_1 and G_2 such that $G_1 \supseteq E$, $G_2 \supseteq E'$ and $|G_1 \cap G_2| < \in$.
 - (2) Giving all the necessary details show that if G₁ and G₂ are open subsets of
 [a, b] such that G₁ ⊆ G₂, then |G₁| ≤ | G₂.
 - (b) Attempt any **two** :
 - (1) Let $E \subset [a, b]$. If $x \in E'$ and if $E \cup \{x\}$ is measurable then prove that E is measurable.
 - (2) If $E \subseteq [a, b]$, then show that $\overline{m}E + \underline{m}E' = b a$.
 - (3) Using the definition of inner measure, show that the inner measure of the interval (1, 2) is 1.
 - (c) Answer in brief :
 - (1) Give the characterization of the open subsets of [a, b] and hence define its length.
 - (2) Give the definition of outer measure for a subset E of [a, b].
 - (3) True or False : If F is a closed subset of [a, b] and | F | = 0, then the interior of F is an empty set.

1

- 2. (a) Attempt any **one** :
 - (1) If E_1 and E_2 are subsets of [a, b] then prove that

 $\overline{\mathbf{m}}\mathbf{E}_1 + \overline{\mathbf{m}}\mathbf{E}_2 \ge \overline{\mathbf{m}}(\mathbf{E}_1 \cup \mathbf{E}_2) + \overline{\mathbf{m}}(\mathbf{E}_1 \cap \mathbf{E}_2) \text{ and}$ $\underline{\mathbf{m}}\mathbf{E}_1 + \underline{\mathbf{m}}\mathbf{E}_2 \le \underline{\mathbf{m}}(\mathbf{E}_1 \cup \mathbf{E}_2) + \underline{\mathbf{m}} (\mathbf{E}_1 \cap \mathbf{E}_2).$

(2) Prove that non-measurable sets exist.

JB2-101

7

P.T.O.

4

- (b) Attempt any **two** :
 - (1) Prove or disprove : Every measurable function on [a, b] is bounded.
 - (2) If E_1 and E_2 are measurable sets and $E_2 \subset E_1$, then show that $m(E_1 E_2) = mE_1 mE_2$.
 - (3) Prove that every constant function on [a, b] is measurable.
- (c) Answer in brief :
 - (1) If for the subsets A, B of [0, 2], mA = 1 and B = $\{1, 2\}$, then what is the measure of the set A \cup B ?
 - (2) True or False : If \overline{E} denotes the closure of E, then $m\overline{E} = mE$.
 - (3) State (only) a condition which is necessary but not sufficient for a function $f: [a, b] \rightarrow R$ to be measurable.
- 3. (a) Attempt any **one** :
 - If f and g are bounded measurable functions in L[a, b] then prove that f + g is in L[a, b] and moreover

$$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g.$$

- (2) Let f be a bounded function in L[a, b]. If a < c < b, then prove that $f \in L[a, c] \cap L[c, b]$ and $\int_{a}^{b} f = \int_{a}^{c} f + \int_{b}^{b} f.$
- (b) Attempt any **two** :
 - (1) If f is bounded function in L[a, b] and if g is bounded function on [a, b] such that f = g a.e. then show that g ∈ L[a, b] and further that

$$\int_{a}^{b} g = \int_{a}^{b} f.$$

- (2) Let E_1 and E_2 denote the set of rationals and irrationals in [0, 1] respectively. If $f = \chi E_1 - \chi E_2$, then compute $\int_{1}^{1} f$.
- (3) Let $E_1 = [0, \pi/2] \cap Q$, $E_2 = [0, \pi/2] E_1$ and $P = \{E_1, E_2\}$ be a measurable partition of $[0, \pi/2]$. If $f(x) = \sin x$ on $[0, \pi/2]$ then compute L(f, P).

JB2-101

3

7

- (c) Answer in brief :
 - (1) Let $f(x) = \sin^2 x$. If E and F are measurable subsets of [a, b] such that $E \subseteq F$, show that $\int_E f \leq \int_F f$.
 - (2) Give the definition of measurable partition of [a, b].
 - (3) Prove that the Dirichlet function is Lebesgue integrable on [0, 1].

4. (a) Attempt any **one** :

- (1) State and prove Lebesgue's dominated convergence theorem.
- (2) State and prove Fatou's lemma and deduce the monotone convergence theorem.
- (b) Attempt any **two** :
 - Using the absolute continuity of Lebesge integral show that if f ∈ L[a, b] and if

$$g(x) = \int_{a}^{x} f(t) dt,$$

then g is uniformly continuous on [a, b].

(2) If a measurable function $f \in L[a, b]$ and $\lambda \in R$, then show that

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

(3) If $f(x) = x - \sin x$, $0 \le x \le 2\pi$, then find f^+ and f^- .

(c) Answer in brief :

- (1) Explain what we mean by absolute continuity of the Lebesgue integral.
- (2) Is product of two Lebesgue integrable functions on [a, b], a Lebesgue integrable function ?
- (3) How do we find the Lebesgue integral of a non-negative measurable function on (-∞, ∞) ?

3

JB2-101

3

7

5. (a) Attempt any **one** :

- (1) Determine the Fourier series of the function $f(x) = |x|, -\pi \le x \le \pi$. Assuming that it converges everywhere, determine the value of $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$
- (2) Deriving all the necessary details, show that C[a, b] is dense in $L_2[a, b]$.
- (b) Attempt any **two** :
 - (1) State and prove Minkowski's inequality.
 - (2) If $\{f_n\}$ is a sequence of functions in $L_2[a, b]$ converging uniformly to $f \in L_2[a, b]$, then show that $\|f_n f\|_2 \to 0$.
 - (3) Determine the Fourier series of the function $f(x) = 2\cos^2 x + \sin x \cos x$.
- (c) Answer in brief :
 - (1) True or False : $L_2[a, b] \subset C[a, b]$.
 - (2) How do we define a norm in $L_2[a, b]$?
 - (3) What are the Fourier cosine coefficients of the function $f(x) = x^2 \sin x$?

JB2-101

3