\qquad

JA2-103
 January-2016
 M.Sc., Sem.-I
 404 : Mathematics
 (Ordinary Differential Equations)

Time : 3 Hours]
[Max. Marks : 70

1. (a) Find the general solution of any one of the following equations in terms of power series in x :
(i) $y^{\prime \prime}-y^{\prime}+x y=0$
(ii) $\mathrm{y}^{\prime \prime}+(1+x) \mathrm{y}^{\prime}-\mathrm{y}=0$
(b) Attempt any two :
(i) Find the general solution of the equation $4 y^{\prime \prime}-8 y^{\prime}+7 y=0$
(ii) Solve : $\mathrm{y}^{\prime \prime}+4 \mathrm{y}^{\prime}+5 \mathrm{y}=0, \mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=5$.
(iii) Solve $y^{\prime}=-2 x y$ in terms of a power series in x.
(c) Answer very briefly :
(i) Solve : $x y^{\prime}-3 y-x^{4}=0$
(ii) What is the radius of convergence of the series $\sum_{\mathrm{n}=0}^{\infty}\left(\frac{2}{3}\right)^{\mathrm{n}} x^{2 \mathrm{n}}$?
(iii) Verify that $\mathrm{y}_{1}=x$ is one solution of $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 \mathrm{y}=0$ and find y_{2}.
2. (a) Verify that the origin is a regular singular point and calculate two independent Frobenius series solutions for the equation $2 x^{2} y^{\prime \prime}+x y^{\prime}-(x+1) y=0$.

OR
Show that the equation $4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0$ has only one Frobenius series solution. Find the general solution.
(b) Attempt any two :
(i) Find the indicial equation and its roots for the equation. $x^{3} y^{\prime \prime}+(\cos 2 x-1) y^{\prime}+2 x y=0$.
(ii) Find the general solution near $x=0$ of the hypergeometric equation $x(1-x) y^{\prime \prime}+\left(\frac{3}{2}-2 x\right) y^{\prime}+2 y=0$.
(iii) What is the nature of the point $x=\infty$ for the equation $x y^{\prime \prime}+(1-x) y^{\prime}-y=0$? Justify your answer.
(c) Answer very briefly :
(i) Is $x=1$ a regular singular point of the equation $(x-1)^{2} y^{\prime \prime}+x y^{\prime}+y=0$?
(ii) Write down the general solution of the Gauss's hypergeometric equation near the singular point $x=1$.
(iii) Determine the nature of the point $x=0$ for the equation $x y^{"}+(\cos x) \mathrm{y}=0$.
3. (a) Derive the recursion formula for the Chebyshev polynomials and obtain $\mathrm{T}_{2}(x)$, $\mathrm{T}_{3}(x)$ and $\mathrm{T}_{4}(x)$ by taking $\mathrm{T}_{0}(x)=1$ and $\mathrm{T}_{1}(x)=x$.

OR

Prove that $\int_{-1}^{1} \mathrm{P}_{\mathrm{m}}(x) \mathrm{P}_{\mathrm{n}}(x) \mathrm{d} x=0$ if $\mathrm{m} \neq \mathrm{n}$.
(b) Attempt any two :
(i) Show that $\mathrm{T}_{\mathrm{n}}(x)=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)^{\mathrm{n}}+\left(\mathrm{x}-\sqrt{x^{2}-1}\right)^{\mathrm{n}}\right]$
(ii) Find the first two terms of the Legendre series of $\mathrm{f}(x)=\mathrm{e}^{x}$.
(iii) Calcualte Legendre polynomial $\mathrm{P}_{2}(x)$.
(c) Answer very briefly :
(i) What is the value of $\int_{-1}^{1} \frac{\left[T_{4}(x)\right]^{2}}{\sqrt{1-x^{2}}} d x$?
(ii) Write down the recursion formula for the Legendre polynomials.
(iii) State the Minimax property of Chebyshev polynomials. (Do not prove).
4. (a) Find the general solution of the Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$, where p is a non-negative constant and is not an integer.

OR
Express $\mathrm{J}_{2}(x), \mathrm{J}_{3}(x)$, and $\mathrm{J}_{4}(x)$ in terms of $\mathrm{J}_{0}(x)$ and $\mathrm{J}_{1}(x)$.
(b) Attempt any two :
(i) Show that $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{\mathrm{p}} \mathbf{J}_{\mathrm{p}}(x)\right]=x^{\mathrm{p}} \mathbf{J}_{\mathrm{p}-1}(x)$.
(ii) Show that $\mathrm{J}_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$.
(iii) Show that $1=\mathrm{J}_{0}(x)+2 \mathrm{~J}_{2}(x)+2 \mathrm{~J}_{4}(x)+\ldots .$.
(c) Answer very briefly :
(i) Show that between any two positive zeros of $\mathrm{J}_{0}(x)$ there is a zero of $\mathrm{J}_{1}(x)$.
(ii) What is the value of $\Gamma(4)$?
(iii) What is the value of $\mathrm{J}_{1 / 2}(\pi)$?
5. (a) Consider the initial value problem
$y^{\prime}=x^{2}-y, y(0)=0$.
Find successive approximations $\mathrm{y}_{0}(x), \mathrm{y}_{1}(x), \mathrm{y}_{2}(x), \mathrm{y}_{3}(x)$ using Picard's method.

OR

Find the third approximation of the solution of the following initial value problem by Picard's method :
$\begin{cases}\frac{\mathrm{dy}}{\mathrm{d} x}=\mathrm{z}, & \mathrm{y}(0)=1 \\ \frac{\mathrm{dz}}{\mathrm{d} x}=x^{3}(\mathrm{y}+\mathrm{z}), \mathrm{z}(0)=\frac{1}{2}\end{cases}$
(b) Attempt any two :
(i) State (only) Picard's theorem.
(ii) Show that $\mathrm{f}(x, \mathrm{y})=x \mathrm{y}^{2}$ satisfies a Lipschitz condition on any rectangle $\mathrm{a} \leq x \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$.
(iii) Does $\mathrm{f}(x, \mathrm{y})=\mathrm{y}^{1 / 2}$ satisfy a Lipschitz condition on the rectangle $|x| \leq 1$ and $0 \leq y \leq 1$? Justify your answer.
(c) Answer very briefly :
(i) State Lipschitz condition.
(ii) Does $\mathrm{f}(x, \mathrm{y})=x \mathrm{y}$ satisfy a Lipschitz condition on any rectangle $\mathrm{a} \leq x \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$.
(iii) Let $\mathrm{f}(x, \mathrm{y})$ be a continuous function on the closed rectangle R . If f does not satisfy the Lipschitz condition on R , then what can you say about the solution of the initial value problem $\mathrm{y}^{\prime}=\mathrm{f}(x, \mathrm{y}), \mathrm{y}\left(x_{0}\right)=\mathrm{y}_{0}$?

