Seat No. : _____

JA2-101

January-2016

M.Sc., Sem.-I

404 : Physics

(Solid State Physics & Electronics-I)

Time : 3 Hours] [Max. Ma			70
Instruction : Symbols used have usual meanings.			
1.	(a)	Describe in detail the Kronig-Penney model and discuss how the energy band behaves as increasing the energy.	7
		OR Weite notes on a	7
		Write notes on :(i) Exact proof of Bloch theorem	/
		(i) Exact proof of Bloch theorem(ii) Origin of the energy gap	
	(b)	Derive the wave equation of electron in a periodic potential.	7
	(0)	OR	,
		(i) Find the reciprocal lattice of f.c.c. lattice.	4
		(ii) Classification of materials on the basis of band theory of solids.	3
2.	(a)	Describe the tight binding method of band structure calculation and list its merits and demerits.	7
		OR	
		(i) Write notes on Pseudopotential theory.	4
		 (ii) Calculate the Fermi energy and volume of Fermi sphere of aluminium with lattice constant 3.8 Å. 	3
	(b)	What is the dHvA effect and how is it used to deduce the information to construct Fermi surface ? What are Landau levels ?	7
		OR	
		What is Extremal orbit ? Show the quantization of orbits in a magnetic field.	
3.	(a)	Draw circuit diagram of a transformer coupled class A power amplifier and explain its working. Using graphical method of analysis show that its maximum theoretical conversion efficiency is 50%.	7
		OR	
		Write short notes on :	7
		(i) Complementary symmetry push pull amplifier	
		(ii) Cross over distortion	
JA2	2-101	1 P.T.	0.

Draw circuit diagram of astable multivibrator using BJT. Giving voltage timing (b) 7 diagrams explain its working. OR Draw circuit diagram of bistable multivibrator using transistors and explain its working. Describe application of operational amplifier as integrator and differentiator. 7 (a) OR Setup an analog computer to solve the following simultaneous equations : 3x + 6y - 10 = 02x - y - 8 = 0Indicate where voltmeters should be connected to read the solutions. (b) Write a short note on : Frequency compensation in op-amps. 7 OR Draw basic circuit of a square wave generator using Op-amp. Describe its operation with necessary waveforms. Answer the following questions in brief : Explain the behaviour of resistivity with increasing the temperature of pure metal (1)and semiconductor. 1 Why Mg (Magnesium) fall in the category of metal? 1 (2)(3) Write the condition for Magnetic breakdown. 1 (4) What is Bloch function ? 1 (5) What is the use of k.p perturbation theory ? 1 The valance band of a simple cubic metal has the form $E = Ak^2 + B$ where (6) A = 10^{-38} J m². Calculate m^{*}/m⁻ 2 (7) List the main properties of Class C power amplifier. 1 (8) What is the function of input transformer in a push-pull amplifier ? 1 (9) Define monostable multivibrator. 1 (10) Draw circuit diagram of Schmitt trigger circuit using op-amp. 1 (11) What are the applications of current to voltage converter circuit ? 1 (12) How virtual ground differs from actual ground ? 1 (13) Define slew rate. 1

JA2-101

4.

5.