NH2-109

December-2015

M.Sc., Sem.-III

505: Mathematics

(Functions of Several Variables – II)

Time: 3 Hours [Max. Marks: 70

1. (a) Let $g(s, t) = (t^2 - s^2)e_1 + (s^2 + t^2)e_2$, s > 0, t > 0.

7

Let $A = \{(x, y) : 4 < x + y < 8, y - x > 0, x > 0\}$. Show that g is regular and evaluate

$$\int_{\Delta} y^{-1} dV_2(x, y)$$

OR

(a) Let $A = \{(x, y) : x^2 + y^2 \le 4, x \ge 0\}.$

Evaluate $\int_{\Lambda} y^2 dV_2(x, y)$ by introducing polar coordinates.

(b) Answer any **two**:

4

- (i) Evaluate $\int_{0}^{1} dx \int_{0}^{1} \exp(x y) dy$
- (ii) Let $f(x, y) = x \exp(x^2 + y^2)$. Is the point (0, 3) in the support of f?
- (iii) Find the area of the triangle with vertices e_1 , $e_1 + e_2$, $3e_1 + 4e_2$.

(c) Answer all.

3

- (i) Let $f(x) = \exp(x)$. Let A = [3, 8]. Is f integrable over A?
- (ii) Define a null set.
- (iii) Let $A = [0, 1] \times [1, 3] \times [3, 6] \times [6, 10]$.

Find $V_4(A)$.

- (c) Answer all:
 - (i) Let n = 4. Find * $(e_{123} + e_{124} + e_{134} + e_{234})$
 - (ii) Let n = 3. Define the curl of a 1-form w.
 - (iii) Find a non-zero vector in E^2 orthogonal to $e_1 + 2e_2$.
- 4. (a) Let $A = \{(x, y, z) : y = x^2 + z^2, y \le 4\}$ oriented so that $O^{13}(x, y, z) < 0$

Evaluate
$$\int_{A^{\circ}} z \, dx \wedge dy$$

OR

- (a) Find the area of A = $\{(x, y, xy) : x^2 + y^2 \le 1\}$
- (b) Answer any **two**:

7

- (i) Let $g: E^3 \to E^4$ be given by $g(s, t, u) = se_1 + te_2 + ue_3 + tue_4$. Find $J_g(s, t, u)$
- (ii) Define an orientable manifold
- (iii) Let $S = \{(x, y, z) : 2x + 3y + 4z 5 = 0\}$. Give a coordinate system for S.
- (c) Answer all:
 - (i) Give a map $g: E^1 \to E^3$ of class $C^{(1)}$. (Do not prove)
 - (ii) Give a map $g: E^1 \to E^3$ which is univalent (Do not prove)
 - (iii) Give a map $g: E^1 \to E^3$ for which $J_g(s) > 0$ for every $s \in E^1$.
- 5. (a) Evaluate $\int z^2 dx \wedge dy$, where Σ is the standard 3-simplex. 7

OR

Let n = 3 and D =
$$\{(x, y, z) : x^2 + y^2 < z^2, 0 < z < 1\}$$
.

Evaluate
$$\int (x + z) dx \wedge dy$$
.

NH2-109 3 P.T.O.

(b) Answer any **two**:

4

- (i) Let n = 2 and assume that D is a regular domain. Show that $V_2(D) = -\int_{D^+} y \, dx$.
- (ii) Give an example of a regular domain in E^2 . (Do not prove).
- (iii) State (without proof) Stoke's formula.

(c) Answer all:

3

- (i) Let D = $\{(x, y) : 4 < x^2 + y^2 < 9\}$. Find the boundary of D. (Do not prove).
- (ii) Let D = $\{(x, y, z) : x^2 + y^2 z^2 < 1\}$. Is D bounded?
- (iii) Let $M = \{(x, y, z) : x^2 + y^2 + z^2 = 2\}$. Give a unit vector normal to M at (1, 1, 0)

4

NH2-109