\qquad

NH2-109

December-2015
M.Sc., Sem.-III

505 : Mathematics
(Functions of Several Variables - II)

1. (a) Let $\mathrm{g}(\mathrm{s}, \mathrm{t})=\left(\mathrm{t}^{2}-\mathrm{s}^{2}\right) \mathrm{e}_{1}+\left(\mathrm{s}^{2}+\mathrm{t}^{2}\right) \mathrm{e}_{2}, \mathrm{~s}>0, \mathrm{t}>0$.

Let $\mathrm{A}=\{(x, \mathrm{y}): 4<x+\mathrm{y}<8, \mathrm{y}-x>0, x>0\}$. Show that g is regular and evaluate
$\int_{A} \mathrm{y}^{-1} \mathrm{dV}_{2}(x, y)$

OR

(a) Let $\mathrm{A}=\left\{(x, \mathrm{y}): x^{2}+\mathrm{y}^{2} \leq 4, x \geq 0\right\}$.

Evaluate $\int_{\mathrm{A}} \mathrm{y}^{2} \mathrm{dV}_{2}(x, y)$ by introducing polar coordinates.
(b) Answer any two :
(i) Evaluate $\int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \exp (x-y) d y$
(ii) Let $\mathrm{f}(x, \mathrm{y})=x \exp \left(x^{2}+\mathrm{y}^{2}\right)$. Is the point $(0,3)$ in the support of f ?
(iii) Find the area of the triangle with vertices $\mathrm{e}_{1}, \mathrm{e}_{1}+\mathrm{e}_{2}, 3 \mathrm{e}_{1}+4 \mathrm{e}_{2}$.
(c) Answer all.
(i) Let $\mathrm{f}(x)=\exp (x)$. Let $\mathrm{A}=[3,8]$. Is f integrable over A ?
(ii) Define a null set.
(iii) Let $\mathrm{A}=[0,1] \times[1,3] \times[3,6] \times[6,10]$.

Find $V_{4}(A)$.
P.T.O.
2. (a) Let $\mathrm{n}=4$,

Let $h_{1}=e_{1}+e_{2}, h_{2}=e_{1}+e_{2}+e_{3}, h_{3}=e_{1}+e_{2}+e_{4}$. Show that the vectors h_{1}, h_{2}, h_{3} are linearly independent in E^{4}.

Let $\mathrm{k}_{1}=2 \mathrm{e}_{1}+2 \mathrm{e}_{2}+\mathrm{e}_{3}, \mathrm{k}_{2}=2 \mathrm{e}_{1}+2 \mathrm{e}_{2}+\mathrm{e}_{4}, \mathrm{k}_{3}=2 \mathrm{e}_{1}+2 \mathrm{e}_{2}+\mathrm{e}_{3}+\mathrm{e}_{4}$. Show that the vectors k_{1}, k_{2}, k_{3} span the same vector subspace of E^{4} as the vectors h_{1}, h_{2}, h_{3}.

OR
(a) Write down (without proof) the standard basis for the vector space $\mathrm{E}_{\mathrm{r}}^{4}, \mathrm{r}=1,2,3,4$. Let $h_{1}=e_{2}+e_{3}, h_{2}=e_{2}+e_{3}+e_{4}, h_{3}=e_{1}+e_{2}+e_{3}$. Show that the vectors h_{1}, h_{2}, h_{3} are linearly independent in E^{4}.
(b) Answer any two :
(i) Let S be the 3-simplex in E^{4} with vertices $e_{1}, e_{3}, e_{4}, e_{1}+e_{3}+e_{4}$. Find $V_{3}(S)$.
(ii) Find the area of the triangle with vertices $2 \mathrm{e}_{1}, 2 \mathrm{e}_{1}+\mathrm{e}_{2}-\mathrm{e}_{3}, 3 \mathrm{e}_{1}+\mathrm{e}_{2}$.
(iii) Give two different frames for E^{3}.
(c) Answer all :
(i) Simplify $e_{3} \wedge e_{5} \wedge e_{24}$.
(ii) Evaluate the scalar product $\left(\mathrm{e}^{1}+\mathrm{e}^{2}\right) \cdot\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right)$
(iii) Simplify $\left(2 \mathrm{e}^{2}-\mathrm{e}^{3}\right) \wedge\left(3 \mathrm{e}^{1}+\mathrm{e}^{3}\right)$.
3. (a) Let $\mathrm{n}=\mathrm{m}=3$, $g(s, t, u)=(s \cos (t)) e_{1}+(s \sin (t)) e_{2}+u e_{3}$. Find $(y d y \wedge d z)^{\#}$.

OR

(a) Show that if w and ξ are closed differential forms, then $w \wedge \xi$ is closed. Show that if w is closed and ξ is exact, then $w \wedge \xi$ is exact.
(b) Answer any two :
(i) Find the exterior differential of $\sin \left(x y^{2}\right) d x \wedge d z$
(ii) Let $\mathrm{n}=3$, find $\mathrm{e}_{\mathrm{i}} \times \mathrm{e}_{\mathrm{j}}$ for all pairs $\mathrm{i}, \mathrm{j}=1,2,3$.
(iii) Find a 2 -form ξ such that $\mathrm{d} \xi=\mathrm{d} x \wedge \mathrm{dy} \wedge \mathrm{dz}$
(c) Answer all :
(i) Let $\mathrm{n}=4$. Find $*\left(\mathrm{e}_{123}+\mathrm{e}_{124}+\mathrm{e}_{134}+\mathrm{e}_{234}\right)$
(ii) Let $\mathrm{n}=3$. Define the curl of a 1 -form w .
(iii) Find a non-zero vector in E^{2} orthogonal to $\mathrm{e}_{1}+2 \mathrm{e}_{2}$.
4. (a) Let $\mathrm{A}=\left\{(x, \mathrm{y}, \mathrm{z}): \mathrm{y}=x^{2}+\mathrm{z}^{2}, \mathrm{y} \leq 4\right\}$ oriented so that $\mathrm{O}^{13}(x, \mathrm{y}, \mathrm{z})<0$

Evaluate $\int_{A^{\circ}} \mathrm{zd} x \wedge \mathrm{dy}$

OR

(a) Find the area of $\mathrm{A}=\left\{(x, \mathrm{y}, \mathrm{xy}): x^{2}+\mathrm{y}^{2} \leq 1\right\}$ 7
(b) Answer any two :
(i) Let $g: E^{3} \rightarrow E^{4}$ be given by $g(s, t, u)=s e_{1}+\mathrm{te}_{2}+\mathrm{ue}_{3}+\mathrm{tue}_{4}$.

Find $\mathrm{J}_{\mathrm{g}}(\mathrm{s}, \mathrm{t}, \mathrm{u})$
(ii) Define an orientable manifold
(iii) Let $\mathrm{S}=\{(x, \mathrm{y}, \mathrm{z}): 2 x+3 \mathrm{y}+4 \mathrm{z}-5=0\}$. Give a coordinate system for S .
(c) Answer all :
(i) Give a map $g: \mathrm{E}^{1} \rightarrow \mathrm{E}^{3}$ of class $\mathrm{C}^{(1)}$. (Do not prove)
(ii) Give a map $\mathrm{g}: \mathrm{E}^{1} \rightarrow \mathrm{E}^{3}$ which is univalent (Do not prove)
(iii) Give a map $\mathrm{g}: \mathrm{E}^{1} \rightarrow \mathrm{E}^{3}$ for which $\mathrm{J}_{\mathrm{g}}(\mathrm{s})>0$ for every $\mathrm{s} \in \mathrm{E}^{1}$.
5. (a) Evaluate $\int_{\partial \Sigma^{+}} \mathrm{z}^{2} \mathrm{~d} x \wedge \mathrm{dy}$, where Σ is the standard 3-simplex.

OR

Let $\mathrm{n}=3$ and $\mathrm{D}=\left\{(x, \mathrm{y}, \mathrm{z}): x^{2}+\mathrm{y}^{2}<\mathrm{z}^{2}, 0<\mathrm{z}<1\right\}$.
Evaluate $\int_{\partial D^{+}}(x+z) \mathrm{d} x \wedge \mathrm{dy}$.
P.T.O.
(b) Answer any two :
(i) Let $\mathrm{n}=2$ and assume that D is a regular domain. Show that $\mathrm{V}_{2}(\mathrm{D})=-\int_{\partial \mathrm{D}^{+}} \mathrm{yd}$.
(ii) Give an example of a regular domain in E^{2}. (Do not prove).
(iii) State (without proof) Stoke's formula.
(c) Answer all :
(i) Let $\mathrm{D}=\left\{(x, y): 4<x^{2}+y^{2}<9\right\}$. Find the boundary of D . (Do not prove).
(ii) Let $\mathrm{D}=\left\{(x, \mathrm{y}, \mathrm{z}): x^{2}+\mathrm{y}^{2}-\mathrm{z}^{2}<1\right\}$. Is D bounded?
(iii) Let $\mathrm{M}=\left\{(x, \mathrm{y}, \mathrm{z}): x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=2\right\}$. Give a unit vector normal to M at $(1,1,0)$

