Seat No. : _____

NG2-112

December-2015

M.Sc., Sem.-III

504 : Statistics (Operations Research)

Time : 3 Hours]

[Max. Marks: 70

- **Instructions :** (i) Attempt **all** questions.
 - (ii) All questions carry equal marks.
- 1. (a) Explain the various costs that are involved in inventory problems with suitable examples. How they are inter-related ?

OR

Why inventory is maintained ?

(b) Formulate and solve continuous probabilistic reorder point lot size model to determine optimal reorder point for a presented lot size. Lead time is finite. Shortages are allowed and fully backlogged.

OR

Find the optimal quantity in a continuous simple probabilistic model for a time dependent case. Shortages are allowed and backlogged fully, setup cost per period is constant.

2. (a) What is replacement problem ? Explain, with examples, the failure mechanism of items.

OR

Discuss staffing problem with example.

- (b) The maintenance cost increases with time and the money value decreases with constant rate. Obtain a mathematical result in order to support the following:
 - (i) Replace if the running cost of next period is greater than the weighted average of previous costs.

NG2-112

(ii) Do not replace if the running cost of the next period is less than the weighted average of the previous costs.

OR

Explain group replacement concept and its applications.

3. (a) Discuss matrix solution method in network analysis.

OR

Explain the significance of 'working out of float' in the network of project activities. Discuss, in brief, the different types of floats.

(b) State and prove maximum-flow minimum-cut theorem.

OR

Compare and contrast CPM and PERT. Under what conditions would you recommend the scheduling by PERT ? Justify your answer with reasons.

4. (a) What is non-linear programming ? Explain Lagrangian method for solving it.

OR

What is Quadratic programming ? Explain Wolfe's method for solving it.

(b) What do you understand by simulation ? Explain briefly its limitations and advantages.

OR

Discuss simulation of maintenance problems with examples.

- 5. Answer the following :
 - (i) Operating decisions in an inventory system are concerned with
 - (a) order quantity (b) reorder level
 - (c) customer service level (d) all of the above

(ii) If the unit cost rises, then optimal order quantity

- (a) increases (b) decreases
- (c) either increase or decrease (d) none of the above
- (iii) Define lead time.

- (iv) The problem of replacement is felt when job performing units fail
 - (a) suddenly (b) gradually
 - (c) both (a) and (b) (d) (a) but not (b)
- (v) The sudden failure among items is seen as
 - (a) progressive (b) retrogressive
 - (c) random (d) all of the above
- (vi) The group replacement policy is suitable for identical low cost items which are likely to
 - (a) fail over a period of time
 - (b) fail suddenly
 - (c) fail completely and suddenly
 - (d) none of the above
- (vii) Float or slack analysis is useful for
 - (a) projects behind the schedule only
 - (b) projects ahead of the schedule only
 - (c) both (a) and (b)
 - (d) none of the above
- (viii) The techniques of operations research used for planning, scheduling and controlling projects are referred to as network analysis.
 - (a) True (b) False
- (ix) Generally the PERT technique deals with the project of
 - (a) repetitive nature
 - (b) non-repetitive nature
 - (c) deterministic nature
 - (d) none of the above.
- (x) Beta probability distribution is often used in computing the expected activity completion times and variances in networks.
 - (a) True (b) False
- (xi) Bordered Hessian matrix is related to Wolfe's method.
 - (a) True (b) False

NG2-112

P.T.O.

- (xii) In Beale's method, we partitioned the variables into basic and non-basic and use the results of classical calculus.
 - (a) True (b) False
- (xiii) Special simulation languages are useful because they
 - (a) reduce programme preparation time and cost
 - (b) have the capability to generate random variables
 - (c) require no prior programming knowledge
 - (d) all of the above.
- (xiv) Few causes of simulation analysis failure are
 - (a) inadequate level of user participation
 - (b) inappropriate levels of detail
 - (c) incomplete mix of essential skills
 - (d) all of the above.

NG2-112