Seat No. : _____

NG2-111

December-2015

M.Sc., Sem.-III

504 : MATHEMATICS

Mathematical Programming

Time : 3 Hours]

[Max. Marks: 70

7

1. (a) Attempt any **one** :

(i) Solve the following LPP using Big - M method :

Maximize $z = x_1 + 3x_2 + x_3$

subject to :

 $2x_1 + 3x_2 - x_3 = 5$ $x_1 + 5x_2 + 2x_3 = 12$

and

 $x_1, x_2, x_3 \ge 0.$

(ii) Write the dual of the following LPP :

Maximize P = 2x - 3y + 4z

subject to:

 $2x + y + 3z \le 7$ $x + y + z \ge 3$ 3x + 5y + 2z = 9 $x, y, z \ge 0.$

From the solution of the dual, determine the solution of the given primal.

(b) Attempt any **one** :

and

(i) What are the properties of Linear Programming Problem ?

NG2-111

P.T.O.

- (ii) A manufacturer produces two types of models M and N. Each M model requires 4 hours of grinding and 2 hours of polishing; whereas each N model requires 2 hours of grinding and 5 hours of polishing. The manufacturer has 2 grinders and 3 polishers. Each grinder works for 40 hours a week and each polisher works for 60 hours a week. Profit on model M is ₹ 3 and model N is ₹ 4. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models so that he may make the maximum profit in a week ?
- (c) Choose the correct **one** :
 - (i) Linear programming is
 - (a) constrained optimization model;
 - (b) constrained decision making model;
 - (c) mathematical programming model;
 - (d) all of the above.
 - (ii) Infeasibility is observed
 - (a) in computing the entering variable;
 - (b) in computing the leaving variable;
 - (c) artificial variable remains in the basis;
 - (d) none of the above.
 - (iii) The primal is a maximization model in m equality constraints and n non-negative variables. The dual has
 - (a) *n* constraints and *m* non-negative variables;
 - (b) is a minimization model;
 - (c) both (a) and (b);
 - (d) neither (a) nor (b).

2. (a) Attempt any **one** :

(i) Find the optimum integer solution to the LPP

Maximize $Z = 2x_1 + 3x_2$

Subject to the constraints :

$$\begin{aligned} x_1 + 2x_2 &\leq 4; \\ x_1 + x_2 &\leq 3; \, x_1, \, x_2 \geq 0 \end{aligned}$$

NG2-111

3

(ii) Use Gomory's cutting plane method to solve the LPP

Maximize $Z = 3x_1 + 12x_2$

Subject to the constraints :

$$2x_1 + 4x_2 \le 7$$

 $5x_1 + 3x_2 \le 15; x_1, x_2 \ge 0$ and integers.

- (b) Attempt any **one** :
 - (i) Find (only) lower bound of the following IPP using Branch & Bound method.

Minimize $Z = 3x_1 + 2.5x_2$

Subject to the constraints :

 $x_1 + 2x_2 \ge 20$

 $3x_1 + 2x_2 \ge 50; x_1, x_2 \ge 0$ and integers.

- (ii) Discuss Branch & Bound method.
- (c) Choose the correct **one** :
 - (i) The use of cutting plane method
 - (a) reduce the number of constraints in the given problem.
 - (b) yields better value of objective function.
 - (c) require use of standard LP approach between each cutting plane application.
 - (d) none of these.
 - (ii) Branch & Bound method divides the feasible solution space into smaller parts by
 - (a) branching
 - (b) bounding
 - (c) enumerating
 - (d) all of the above.
 - (iii) Which of the following is the consequence of adding a new cut constraint to an optimal simplex table ?
 - (a) addition of new variable to the table.
 - (b) makes the previous solution infeasible.
 - (c) eliminates non-integer solution from the solution space.
 - (d) all of the above.

NG2-111

P.T.O.

3

3. (a) Attempt any **one** :

(i) What is the percentage change in optimal cost of transportation problem obtained by LCM or VAM ?

	Р	Q	R	S	Supply
А	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Demand	200	225	275	250	

(ii) Find the optimal assignment schedule.

	Location								
		Р	Q	R	S	Т			
	А	9	11	15	10	11			
Machine	В	12	9	-	10	9			
	С	_	11	14	11	7			
	D	14	8	12	7	8			

- (b) Attempt any **one** :
 - (i) Explain the characteristics of opportunity costs.
 - (ii) Discuss the steps to be performed in solving assignment problem with objective of maximization ?
- (c) Choose the correct **one** :
 - (i) One disadvantage of NWCM to find initial solution to the transportation problem is that
 - (a) it is complicated to use
 - (b) it does not take into account cost of transportation
 - (c) it leads to a degenerate initial solution
 - (d) all of the above.

NG2-111

7

3

- (ii) During an iteration while moving from one solution to the next, degeneracy may occur when
 - (a) the closed path indicates a diagonal move.
 - (b) two or more occupied cells are on the closed path but neither of them represents a corner of the path.
 - (c) two or more occupied cells on the closed path with minus sign are tied for lowest circled value.
 - (d) either of the above.
- (iii) The purpose of a dummy row or column in an assignment problem is to
 - (a) obtain balance between total activities and total resources.
 - (b) prevent a solution from becoming degenerate.
 - (c) provide a means of representing a dummy problem.
 - (d) none of the above.
- 4. (a) Attempt any **one** :
 - (i) Obtain necessary conditions (only) for the optimum solution of

Minimize $Z = 3e^{2x_1^{+1}} + 2e^{x_2^{+5}}$

Subject to the constraints :

 $x_1 + x_2 = 7; x_1, x_2 \ge 0.$

(ii) Use Wolfe's method to obtain the modified QP (auxiliary equations) for following non-linear programming problem.

Maximize $Z = 2x_1 - x_1^2 + x_2$

Subject to the constraints :

 $2x_1 + 3x_2 \le 6$

$$2x_1 + x_2 \le 4; x_1, x_2 \ge 0.$$

(b) Attempt any **one** :

(i) Write the matrix associated with quadratic form $2x_1^2 + 3x_2^3 - 5x_1x_2$. Comment on the matrix obtained.

NG2-111

4

(ii) A company sells two types of items A and B. Item A sells for $\overline{\xi}$ 25/ unit and sales revenue for item B decreases as the number of its units sold increases and Sales revenue is given by Sales revenue = $30x_2 - 0.30x_2^2$. The marketing department has only 1200 hours available for distributing these items in the next year. Further, the company estimates the sales function as non-linear and is given by Sales time = $x_1 + 0.2x_1^2 + 3x_2 + 0.35x_2^2$. The company can only procure 6000 units of item A and B for sales in the next year. Formulate the problem to determine number of units of product A and B to be procured so as to maximize the total revenue.

3

7

- (c) Attempt any **one** :
 - (i) State Kuhn-Tucker necessary and sufficient conditions in NLPP.
 - (ii) Comment upon the nature of the solution when

$$\left| \frac{\partial z}{\partial x_{N_j}} \right|_{x_N = 0} = \alpha_j \text{ in Beale's method.}$$

5. (a) Attempt any **one** :

(i) Using dynamic programming, find the shortest path to be travelled by the tourist.

NG2-111

(b) Attempt any **one** :

(i) Use dynamic programming approach to minimize

$$Z = \sum_{i=1}^{n} y_i^2$$
 subject to $\prod_{i=1}^{n} y_i = c, c \neq 0, y_i \ge 0, j = 1, 2, ... n.$

- (ii) Define optimality criteria for fractional programming problem.
- (c) Attempt any **one** :
 - (i) Define
 - (1) State variable, (2) Stage
 - (ii) What is role of return function ?

3

NG2-111