Seat No. : _____

NF-132

December-2015 M.Sc., Sem.-III 503 : Statistics (Multivariate Analysis)

Time: 3 Hours]

[Max. Marks: 70

Instructions :	(1)	All questions carry equal marks.
----------------	-----	----------------------------------

(2) Scientific calculator can be used.

1. (a) Let \underline{x}_r , r = 1, 2, ...k, be independently distributed as $N_p(\underline{\mu}_r, \Sigma_r)$. Then for fixed matrices $A_r : m x p$, obtain the distribution of $\sum_{r=1}^k A_r \underline{x}_r$.

- (i) If $\underline{\mu}_r = \underline{\mu}$ and $\Sigma_r = \Sigma$; $r = 1, 2, \dots, k$, then obtain the distribution of \overline{x} .
- (ii) If \underline{x}_1 and \underline{x}_2 are independently distributed as $N_p(\underline{\mu}, \Sigma)$; r = 1, 2, then obtain the distribution of $\underline{y}_1 = \underline{x}_1 + \underline{x}_2$ and $\underline{y}_2 = \underline{x}_1 - \underline{x}_2$. Also write the joint distribution of \underline{y}_1 and \underline{y}_2 .

OR

(a) Let $\underline{x} \sim N_p(\underline{\mu}, \Sigma)$ and let $\underline{x}, \underline{\mu}$ and Σ be partition as follows :

$$\underline{x} = \begin{bmatrix} \underline{x}_1 \\ \underline{x}_2 \end{bmatrix}_{s}^{r}, \ \underline{\mu} = \begin{bmatrix} \underline{\mu}_1 \\ \underline{\mu}_2 \end{bmatrix}_{s}^{r} \text{ and } \Sigma = \begin{bmatrix} \Sigma_{11} \\ \Sigma_{12} \\ \Sigma_{12} \\ \Sigma_{22} \end{bmatrix}_{s}^{r}, \ r+s=p.$$

- (i) Show that $\underline{x}_1 \sum_{22}^{-1} \sum_{12} \underline{x}_2$ and \underline{x}_2 are independently distributed.
- (iii) Obtain the conditional distribution of $(x_1/x_2 = x_2)$
- (b) Define canonical correlation coefficients and canonical variates. In usual notation show that the canonical correlation are solution of the determinant equation

$$\begin{vmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & -\lambda \Sigma_{22} \end{vmatrix} = 0$$

Hence or otherwise, show that multiple correlation and simple correlation are special cases of canonical correlation.

NF-132

OR 1

P.T.O.

- (b) Define partial correlation coefficient. In usual notation obtain the expression in terms of elements of $\Sigma^{-1} = (\sigma^{ij})$ for partial correlation coefficient. Show that partial correlation coefficient between x_1 and x_2 is nothing but the conditional correlation between x_1 and x_2 given \underline{x}_3 .
- 2. (a) Define Wishart matrix. Obtain probability density function Wishart matrix V:pxp when $n \ge p$, $\mu = 0$ and $\Sigma = I_p$.

OR

(a) Let $V \sim W_p(V, n, \Sigma)$, $n \ge p$, $\Sigma > 0$; and let $V = \begin{bmatrix} V_{11} V_{12} \\ V_{21} V_{22} \end{bmatrix}$, $\Sigma = \begin{bmatrix} \Sigma_{11} \Sigma_{12} \\ \Sigma_{21} \Sigma_{22} \end{bmatrix}$,

 $V_{1,2} = V_{11} - V_{12} V_{22}^{-1} V_{12}^{'}$, $\Sigma_{1,2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^{'}$ and $\beta = \Sigma_{12} \Sigma_{22}^{-1}$, with r + s = p. Then show that $V_{1,2}$ and (V_{12}, V_{22}) are independently distributed, where $V_{1,2} \sim W_r (\Sigma_{1,2}, n - s)$, V_{12} given V_{22} is $N_{r,s} (\beta V_{22}, \Sigma_{1,2}, V_{22})$, and $V_{22} \sim W_s (\Sigma_{22}, n)$.

(b) Define Hotelling's T² statistic. Show that it is used to test the H₀ : $\underline{\mu} = \underline{\mu}_0$ against H₁ : $\underline{\mu} \neq \underline{\mu}_0$. When $\underline{x} \sim N_p(\mu, \Sigma)$. Obtain the distribution of T² under H₀. What is the power of the test ?

OR

- (b) Show that Hotelling's T² can be used to test $H_0 = \rho_{1,23,...,p} = 0$ against $H_1 = \rho_{1,23,...,p} \neq 0$, where $\rho_{1,23,...,p}$ is multiple correlation coefficient.
- 3. (a) Discuss the problem of classifying an observation \underline{x}_0 into two known multivariate normal populations with common covariance matrix Σ . Write the classification rule in terms of the Mahalanobis distance Δ^2 .

OR

- (a) Obtain null distribution of the sample correlation coefficient 'r'.
- (b) Define sample Mahalanobis distance D^2 , obtain the relation between D^2 and Hotelling's T^2 . Hence, obtain the distribution of D^2 .

OR

(b) Obtain the estimated minimum ECM rule for classifying an object \underline{x}_0 when $\Sigma_1 = \Sigma_2$.

NF-132

4. (a) Explain orthogonal factor model with K common factors. Give principal component solution of the factor model.

OR

- (a) Explain the technique of One Way MANOVA for the comparison of several multivariate population means.
- (b) Define GLM. Obtain MLE of $\underline{\beta}$ and σ^2 in GLM. How would you test $H : \underline{\beta} = \underline{\beta}_0$?

OR

- (b) Define principal components. Write its important applications. If $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ where $\rho > 0$, then find the principal components associated with matrix Σ and find the percentage of total variance explained by first principal component.
- 5. Answer the following questions :
 - (i) If $x = \begin{bmatrix} 6 & 10 & 8 \\ 9 & 6 & 3 \end{bmatrix}$ is an observation matrix of order 2 × 3, then obtain its mean vector and variance-covariance matrix.
 - (ii) If $\underline{x} : 3 \times 1$ is distributed as $N_3(\underline{\mu}, \Sigma)$ with $\mu' = (2, 1, 1)$ and $\Sigma = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$, then obtain the distributions of $y_1 = x_1 + x_2$ and $y_1 = x_2 x_3$. Write the joint distribution of y_1 and y_2 .
 - (iii) Let x_1, x_2 and x_3 be distributed as $N_3(\underline{\mu}, \Sigma)$ with $\underline{\mu} = \underline{0}$ and $\Sigma = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$, then obtain
 - (i) $E(x_1 x_1 + x_2 x_2 + x_3 x_3)$
 - (ii) $E|(x_1 x_1 + x_2 x_2 + x_3 x_3)|.$
 - (iv) If the joint pdf of (x, y) is $\frac{1}{2\pi} \exp\left[\frac{-1}{2} \{(x-1)^2 + (y-2)^2\}\right]$, then write the values of μ_x , μ_y , σ_x , σ_y and ρ_{xy} .

NF-132

P.T.O.

- (v) Let $\underline{x} \sim N_3$ ($\underline{\mu}$, Σ), where $\underline{\mu} = \underline{0}$ and $\Sigma^{-1} = \begin{bmatrix} -1 & 2 & -1 \\ 5 & -8 & 2 \\ -3 & 5 & -1 \end{bmatrix}$. Write the formula for multiple correlation coefficients $R_{1,23}$ and obtain its value.
- (vi) Let $\underline{x} \sim N_p(\underline{\mu}, \Sigma)$. Obtain characteristic function of the vector \underline{x} .
- (vii) Let $\underline{X}_1, \underline{X}_2, \dots, \underline{X}_{20}$, be a random sample of size n = 20 from a $N_6 (\underline{\mu}, \Sigma)$ population. Specify the distribution of B (19S) B, where $B = \begin{pmatrix} 1 & -1/2 & -1/2 & 0 & 0 \\ 0 & 0 & -1/2 & -1/2 & 1 \end{pmatrix}$, where 'S' is the MLE's of Σ .