\qquad

NF-131

December-2015
 M.Sc., Sem.-III
 503 : Mathematics
 (Number Theory)

[Max. Marks : 70

1. (a) Attempt any one.
(i) Prove that Fermat numbers are all relatively prime to each other. Using this result prove that the number of primes is infinite.
(ii) Find integers x, y, z such that $35 x+55 \mathrm{y}+77 \mathrm{z}=1$.
(b) Attempt any two.
(i) Prove that if a and b are integers, with $\mathrm{b}>0$, then there exist unique integers q and r satisfying $a=q b+r$, where $2 b \leq r<3 b$.
(ii) Prove that the sum of the squares of two odd integers cannot be a perfect square.
(iii) Find all pairs of primes p and q satisfying $\mathrm{p}-\mathrm{q}=3$.
(c) Answer very briefly.
(i) Prove or disprove: If $\mathrm{al}(\mathrm{b}+\mathrm{c})$, then either alb or alc.
(ii) Is the integer 701 prime? Justify your answer.
(iii) State the fundamental theorem of arithmetic.
2. (a) Attempt any one.
(i) Prove that every even perfect number is of the form $2^{\mathrm{k}-1}\left(2^{\mathrm{k}}-1\right)$, where $2^{\mathrm{k}}-1$ is a prime.
(ii) State and prove the Möbius inversion formula.
(b) Attempt any two.
(i) Let x and y be real numbers. Prove that $[x]+[y] \leq[x+y]$.
(ii) For $\mathrm{n}=3655$, find the values of $\tau(\mathrm{n}), \tau(\mathrm{n}+1)$ and $\tau(\mathrm{n}+2)$.
(iii) Prove that the product of two odd primes is never a perfect number.
(c) Answer very briefly.
(i) For what real numbers x is it true that $[x+3]=3+[x]$?
(ii) Find the highest power of 5 dividing 15000 !.
(iii) Calculate ϕ (5225).
3. (a) Attempt any one.
(i) Using the theory of indices, solve $3 x^{4} \equiv 5(\bmod 11)$.
(ii) State and prove the Lagrange's theorem.
(b) Attempt any two.
(i) Solve : $2 x \equiv 1(\bmod 5), 3 x \equiv 9(\bmod 6), 4 x \equiv 1(\bmod 7), 5 x \equiv 9(\bmod 11)$.
(ii) Solve : $140 x \equiv 133(\bmod 301)$.
(iii) For $\mathrm{k} \geq 3$ prove that the integer 2^{k} has no primitive roots.
(c) Answer very briefly.
(i) Find the unit digit of 3^{100}.
(ii) Is the converse of Wilson's theorem true ? Justify your answer.
(iii) What is the order of the integer 9 modulo 13?
4. (a) Attempt any one.
(i) Determine the general solution of $364 x+227 y=1$ by means of simple continued fractions.
(ii) Prove that the value of any infinite continued fraction is an irrational number.
(b) Attempt any two.
(i) Determine the infinite continued fraction representation of $\sqrt{23}$.
(ii) Evaluate $[2 ; \overline{1,2,1}]$
(iii) Obtain all primitive Pythagorean triples of the form $40, \mathrm{y}, \mathrm{z}$.
(c) Answer very briefly.
(i) Express $\frac{118}{303}$ as finite simple continued fraction.
(ii) Compute the convergents of $[1 ; 2,3,3,2,1]$.
(iii) What is the fundamental solution of $x^{2}-11 y^{2}=1$?
5. (a) Attempt any one.
(i) Determine all algebraic integers of the field $\mathbb{Q}(\sqrt{\mathrm{m}})$ where m is a squarefree rational integer, positive or negative but not equal to 1 .
(ii) Show that the fields $\mathbb{Q}(\sqrt{\mathrm{m}})$ for $\mathrm{m}=-1,-2,-3,-7,2,3$ are Euclidean.
(b) Attempt any two.
(i) Prove that the norm of an integer in $\mathbb{Q}(\sqrt{\mathrm{m}})$ is a rational integer.
(ii) Prove that if the norm of an integer α in $\mathbb{Q}(\sqrt{\mathrm{m}})$ is $\pm \mathrm{p}$, where p is a rational prime, then α is a prime.
(iii) Let $\mathbb{Q}(\sqrt{\mathrm{m}})$ have the unique factorization property. Then prove that to any prime π in $\mathbb{Q}(\sqrt{\mathrm{m}})$ there corresponds one and only one rational prime p such that $\pi \mathrm{lp}$.
(c) Answer very briefly.
(i) Prove that reciprocal of a unit is a unit.
(ii) Is $11+2 \sqrt{6}$ a prime in $\mathbb{Q}(\sqrt{6})$?
(iii) If α is any integer, and u any unit, in $\mathbb{Q}(\sqrt{\mathrm{m}})$, prove that ul α.
