Seat No. : _____

ND-140

December-2015 M.Sc., Sem.-III 502 : Mathematics (Algebra-II)

Time: 3 Hours]

[Max. Marks: 70

Instructions : (1) There are **five** questions.

(2) Each question carries equal **14** marks.

1. (a) Attempt any **one** :

- (1) If F is a field, prove that F[x] is a PID.
- (2) If R is a commutative ring with unity, prove thatR/A is integral domain ⇔ A is a prime ideal.

(b) Attempt any **two** :

- (1) Determine all ring homomorphisms from Q to Q.
- (2) Show that $Q(\sqrt{2})$ is not ring isomorphic to $Q(\sqrt{3})$.
- (3) Let $f[x] \in \mathbb{R}[x]$. If f(a) = 0 for every integer a, prove that f(x) = 0 for all x.

(c) Attempt all :

- (1) Give an example of a subring that is not ideal.
- (2) Give an example of a maximal ideal in \mathbb{Z}_{30} .
- (3) If f(x) ∈ Z[x] is irreducible over Q, then it is irreducible over Z.
 True or false. Justify.

1

ND-140

P.T.O.

7

4

3

- 2. (a) Attempt any **one** :
 - (1) Let F be a field, $p[x] \in f[x]$. Prove that : p(x) is irreducible over F if and only if $\langle p(x) \rangle$ is maximal in F(x).
 - (2) State and prove modulo p irreducibility test.
 - (b) Attempt any **two** :
 - (1) Prove that for every positive integer n, there are infinitely many polynomials in $\mathbb{Z}[x]$ of degree n that are irreducible over Q.
 - (2) If D is an integral domain and a, $b \in D$ then show that a and b are associates if any only if $\langle a \rangle = \langle b \rangle$.
 - (3) Show that $\mathbb{Z}\left[\sqrt{-3}\right]$ is not PID.
 - (c) Attempt **all** :
 - (1) Give an example of a field of order 4.
 - (2) Find the units of the ring $\mathbb{Z}\left[\sqrt{-3}\right]$.
 - (3) Prove that 3 is a prime but 13 is not a prime in \mathbb{Z} [i].
- 3. (a) Attempt any **one** :
 - (1) State and prove fundamental theorem of field theory (Kronecker's theorem).
 - (2) Let f(x) be irreducible over F and E be a splitting field of f(x) over F. Then prove that all the zeros of f(x) in E have the same multiplicity.
 - (b) Attempt any **two** :
 - (1) Find the splitting field of $x^2 + x + 2$ over \mathbb{Z}_3 .
 - (2) Prove that $Q\left(\sqrt{2}, \sqrt[3]{2}\right) = Q\left(\sqrt[6]{2}\right)$.
 - (3) Give an example to show that algebraic extension need not be finite extension.

ND-140

4

3

4

7

- (c) Attempt **all**:
 - (1) Define algebraically closed field with an illustration.
 - (2) Describe the elements in Q (π).
 - (3) If a complex number Z is algebraic over Q, prove that \sqrt{Z} is also algebraic over Q.
- 4. (a) Attempt any **one** :
 - For each divisor m of n, prove that GF(pⁿ) has a unique subfield of order p^m. Also these are the only subfields of GF(pⁿ).
 - (2) Prove that a regular g-gon can not be constructed with ruler and compass.
 - (b) Attempt any **two** :
 - (1) Construct the field GF (2^3) .
 - (2) Show that the non-zero elements of a finite field form a cyclic group under multiplication.
 - (3) If A and $b \neq 0$ are constructible, prove that a/b is constructible.
 - (c) Attempt **all**:
 - (1) Prove that the angle θ is constructible if and only if sin θ is constructible.
 - (2) Can we construct a field of order 15 ? Justify.
 - (3) If C is constructible, show that $\sqrt{|C|}$ is also constructible.

5. (a) Attempt any **one** :

- (1) If $K = Q \left(\sqrt[4]{2}, i \right)$ and F = Q(i), find the Galois group Gal(K/F)-with details.
- (2) If $K = Q(\sqrt{3}, \sqrt{5})$ and F = Q, find the Galois group Gal(K/F) with details.

3

ND-140

P.T.O.

7

4

3

7

- (b) Attempt any **two** :
 - (1) Define solvable group. Prove that A_n is solvable.
 - (2) Define nth cyclotomic polynomial. Give first three cyclotomic polynomials.
 - (3) If $\alpha = \cos 2\pi/7 + i \sin 2\pi/7$, then what can be said about Gal(Q(α)/Q) ? Is it cyclic ? Explain.
- (c) Attempt **all** :

3

4

- (1) If n > 1, prove that the product of n^{th} roots of unity is $(-1)^{n+1}$.
- (2) State Galois theorem. (about the solvability by radicals implies solvable group)
- (3) Is $ax^2 + bx + c$ solvable over Q ? Explain.

ND-140