Seat No. :

\qquad

ND-140

December-2015
M.Sc., Sem.-III

502 : Mathematics

(Algebra-II)

Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) There are five questions.
(2) Each question carries equal $\mathbf{1 4}$ marks.

1. (a) Attempt any one :
(1) If F is a field, prove that $\mathrm{F}[x]$ is a PID.
(2) If R is a commutative ring with unity, prove that R / A is integral domain $\Leftrightarrow A$ is a prime ideal.
(b) Attempt any two :
(1) Determine all ring homomorphisms from Q to Q .
(2) Show that $\mathrm{Q}(\sqrt{2})$ is not ring isomorphic to $\mathrm{Q}(\sqrt{3})$.
(3) Let $\mathrm{f}[x] \in \mathbb{R}[x]$. If $\mathrm{f}(\mathrm{a})=0$ for every integer a, prove that $\mathrm{f}(x)=0$ for all x.
(c) Attempt all :
(1) Give an example of a subring that is not ideal.
(2) Give an example of a maximal ideal in \mathbb{Z}_{30}.
(3) If $\mathrm{f}(x) \in \mathbb{Z}[x]$ is irreducible over Q , then it is irreducible over \mathbb{Z}. True or false. Justify.
2. (a) Attempt any one :
(1) Let F be a field, $\mathrm{p}[x] \in \mathrm{f}[x]$. Prove that: $\mathrm{p}(x)$ is irreducible over F if and only if $\langle\mathrm{p}(x)\rangle$ is maximal in $\mathrm{F}(x)$.
(2) State and prove modulo p irreducibility test.
(b) Attempt any two :
(1) Prove that for every positive integer n , there are infinitely many polynomials in $\mathbb{Z}[x]$ of degree n that are irreducible over Q .
(2) If D is an integral domain and $\mathrm{a}, \mathrm{b} \in \mathrm{D}$ then show that a and b are associates if any only if $\langle\mathrm{a}\rangle=\langle\mathrm{b}\rangle$.
(3) Show that $\mathbb{Z}[\sqrt{-3}]$ is not PID.
(c) Attempt all :
(1) Give an example of a field of order 4.
(2) Find the units of the ring $\mathbb{Z}[\sqrt{-3}]$.
(3) Prove that 3 is a prime but 13 is not a prime in \mathbb{Z} [i].
3. (a) Attempt any one :
(1) State and prove fundamental theorem of field theory (Kronecker's theorem).
(2) Let $\mathrm{f}(x)$ be irreducible over F and E be a splitting field of $\mathrm{f}(x)$ over F . Then prove that all the zeros of $\mathrm{f}(x)$ in E have the same multiplicity.
(b) Attempt any two :
(1) Find the splitting field of $x^{2}+x+2$ over \mathbb{Z}_{3}.
(2) Prove that $\mathrm{Q}(\sqrt{2}, \sqrt[3]{2})=\mathrm{Q}(\sqrt[6]{2})$.
(3) Give an example to show that algebraic extension need not be finite extension.
(c) Attempt all :
(1) Define algebraically closed field with an illustration.
(2) Describe the elements in $\mathrm{Q}(\pi)$.
(3) If a complex number Z is algebraic over Q , prove that $\sqrt{\mathrm{Z}}$ is also algebraic over Q .
4. (a) Attempt any one :
(1) For each divisor m of n, prove that $G F\left(p^{n}\right)$ has a unique subfield of order p^{m}. Also these are the only subfields of $\operatorname{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$.
(2) Prove that a regular g-gon can not be constructed with ruler and compass.
(b) Attempt any two :
(1) Construct the field GF $\left(2^{3}\right)$.
(2) Show that the non-zero elements of a finite field form a cyclic group under multiplication.
(3) If A and $\mathrm{b} \neq 0$ are constructible, prove that a / b is constructible.
(c) Attempt all :
(1) Prove that the angle θ is constructible if and only if $\sin \theta$ is constructible.
(2) Can we construct a field of order 15 ? Justify.
(3) If C is constructible, show that $\sqrt{|\mathrm{C}|}$ is also constructible.
5. (a) Attempt any one :
(1) If $\mathrm{K}=\mathrm{Q}(\sqrt[4]{2}, \mathrm{i})$ and $\mathrm{F}=\mathrm{Q}(\mathrm{i})$, find the Galois group $\operatorname{Gal}(\mathrm{K} / \mathrm{F})$-with details.
(2) If $\mathrm{K}=\mathrm{Q}(\sqrt{3}, \sqrt{5})$ and $\mathrm{F}=\mathrm{Q}$, find the Galois group $\mathrm{Gal}(\mathrm{K} / \mathrm{F})$ with details.
(b) Attempt any two :
(1) Define solvable group. Prove that A_{n} is solvable.
(2) Define $\mathrm{n}^{\text {th }}$ cyclotomic polynomial. Give first three cyclotomic polynomials.
(3) If $\alpha=\cos 2 \pi / 7+i \sin 2 \pi / 7$, then what can be said about $\operatorname{Gal}(\mathrm{Q}(\alpha) / \mathrm{Q})$? Is it cyclic? Explain.
(c) Attempt all :
(1) If $\mathrm{n}>1$, prove that the product of $\mathrm{n}^{\text {th }}$ roots of unity is $(-1)^{\mathrm{n}+1}$.
(2) State Galois theorem. (about the solvability by radicals implies solvable group)
(3) Is $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$ solvable over Q ? Explain.
