Seat No. : _____

NB-134

December-2015 M.Sc., Sem.-III 501 : Mathematics (Functional Analysis – I)

Time : 3 Hours]

1. (A) Attempt any **one** :

- (1) Let M and N be subspaces of a vector space V, such that V = M + N. Show that $V = M \oplus N$ if and only if $M \cap N = \{0\}$.
- (2) Show that a linear map $T: V \to V$ is non-singular if and only if T (B) is a basis whenever B is a basis.
- (B) Attempt any two :
 - (1) Let $f(x) = x^2$ and $g(x) = \cos x$. Prove or disprove that $S = \{f, g\}$ is a linearly dependent subset of C[0, 1].
 - (2) Find a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1, 1) = (2, 0) and T(0, 1) = T(1,0).
 - (3) Let $V = M \oplus N$ and E be a projection on M along N. Show that E is idempotent.

(C) Answer in brief :

- (1) Prove or disprove: C[0, 1] is finite dimensional.
- (2) Let V denote the space of all real-valued polynomials with real coefficients and S denote the set of all polynomials of degree 3. Then what is the span of S in V ?
- (3) If A is an algebra with identity then show that every ring ideal in A is also an algebra ideal in A.

2. (A) Attempt any **one** :

(1) If M is a closed subspace of a Banach space N, then show that N/M is a Banach space with respect to the norm defined by

 $||x + M|| = \inf \{||x + m|| : m \in M\}.$

(2) Prove that every linear transformation on l_{∞}^{n} is continuous. Is this true in case of l_{∞} ? Justify your answer.

NB-134

[Max. Marks : 70

4

7

3

7

P.T.O.

- (B) Attempt any **two**:
 - (1) Prove that norm is a continuous function.
 - (2) For a bounded linear map T, show that

 $\sup\{|| T(x) || : || x || \le 1\} = \sup\{|| T(x) || : || x || = 1\}$

- (3) Let $T : N \to N'$ be a continuous linear map and let M be its Kernel. Then show that the mapping $F : N/M \to N'$ defined by F(x + M) = T(x) is bounded and ||F|| = ||T||.
- (C) Answer in brief.
 - (1) If (x_n) and (y_n) are convergent sequences in a normed linear space N, then show that $(x_n + y_n)$ is also a convergent sequence in N.
 - (2) Define a bounded linear map.
 - (3) Show that there exist positive numbers k_1 and k_2 such that

 $\mathbf{k}_1 \parallel x \parallel_{\infty} \le \parallel x \parallel_1 \le \mathbf{k}_2 \parallel x \parallel_{\infty}$, for all $x \in \mathbf{R}^n$.

3 (A) Attempt any **one**:

- (1) If N^* is separable, then prove that N is separable.
- (2) State Hahn-Banach theorem and use it to show that if x is a non-zero vector of N then there exits $f \in N^*$ such that f(x) = || x || and || f || = 1. Further, deduce that $x \to F_x$ is a norm preserving map of N into N^{**}.
- (B) Attempt any **two**:
 - (1) State the conjugate spaces of l_1 , c_0 , l_2^n and l_{∞}^n .
 - (2) If M is a closed subspace of N and $x \notin M$, then show that there exists $f \in N^*$ such that f(M) = 0 and $f(x) \neq 0$.
 - (3) Show that l_1 is separable.
- (C) Answer in brief :
 - (1) Show that the mapping $x \to F_x$ is linear.
 - (2) What is the dimension of $(l_2^3)^*$?
 - (3) True or False : Every reflexive space is complete.

2

3

7

4

3

- 4. (A) Attempt any **one**:
 - (1) State and prove the closed graph theorem.
 - (2) State the Uniform Boundedness theorem. Use it to prove that a subset X of N is bounded if and only if f(X) is a bounded set for each f ∈ N*.
 - (B) Attempt any **two**:
 - (1) Let $T : B \to B$ be linear, bounded, one-one and onto. Assuming the closed graph theorem prove that T is open.
 - (2) If a Banach space B is reflexive, then show that B^* is also reflexive.
 - (3) If $T \in B(N)$, then show that the mapping $T \to T^*$ is linear.
 - (C) Answer in brief :
 - (1) State the open mapping theorem.
 - (2) For $T \in B(N)$, define its conjugate T* and show that it is linear.
 - (3) Show that the conjugate of an identity operator is an identity operator.
- 5. (A) Attempt any **one**:
 - (1) Prove that a non-empty closed and convex subset C of H has a unique vector of the smallest norm. Show that the result fails if C is not closed or not convex.
 - (2) Show that a Hilbert space H is finite dimensional if and only if every complete orthonormal set in H is a Hamel basis.
 - (B) Attempt any **two**:
 - (1) Let $S = \{e_1, e_2, ..., e_n\}$ be an orthonormal set in H. Then prove that the following statements are equivalent :
 - (a) S is complete;
 - (b) $x \perp S \Longrightarrow x = 0;$
 - (c) if $x \in H$, then $x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$;
 - (d) if $x \in H$, then $||x||^2 = \sum_{i=1}^{n} |\langle x, e_i \rangle|^2$

P.T.O.

3

4

7

4

- (2) If S = {e₁, e₂, ..., e_n} is an orthonormal set in H, then show that for every $x \in H, \ x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i \perp S.$
- (3) State and prove the parallelogram law in a Hilbert space.

(C) Answer in brief :

- (1) State Bessel's inequality.
- (2) Let S be a non-empty subset of H. Show that S^{\perp} is a closed subspace of H.
- (3) Let S be a non-empty subset of H. Show that $S \subseteq S^{\perp \perp}$.

NB-134